期刊文献+

基于mRMR和VMD-AM-LSTM的短期风功率预测 被引量:8

Short-term Wind Power Prediction Based on mRMR and VMD-AM-LSTM
下载PDF
导出
摘要 为了提高模型预测风功率的准确率,提出了一种基于最大相关-最小冗余筛选、变分模态分解、注意力机制和长短期记忆神经网络的短期风功率预测方法。首先使用变分模态分解算法将风功率序列分解成几个中心频率不同的分量;再对各个分量结合最大相关-最小冗余筛选出的气象特征分别建立注意力机制和长短期记忆混合预测模型;最后将各个分量的预测结果叠加,得到最终的风功率。实际算例表明,与其他几种模型对比,所提预测方法准确率明显提升。 In order to improve the accuracy of the model to predict wind power,a short-term wind power prediction method based on maximum correlation-minimum redundancy filtering,variational mode decomposition,attention mechanism and long and short-term memory(LSTM) neural network is proposed.First,the variational mode decomposition algorithm is used to decompose the wind power sequence into several components with different center frequencies.Then,an attention mechanism and a mixed prediction model of long and short-term memory are established for each component combined with the meteorological characteristics selected by the maximum correlation-minimum redundancy.Finally,the prediction results of each component are superimposed to obtain the final wind power.Through practical examples,it is shown that compared with several other models,the prediction accuracy of the proposed method is significantly improved.
作者 杨宇晴 张怡 YANG Yu-qing;ZHANG Yi(School of Electrical Engineering,North China University of Science and Technology,Tangshan 063000,China)
出处 《控制工程》 CSCD 北大核心 2022年第1期10-17,共8页 Control Engineering of China
基金 国家自然科学基金资助项目(61803154) 河北省自然科学基金资助项目(F2019209553) 国家重点研发项目(2021YFE0190900)。
关键词 短期风功率预测 变分模态分解 注意力机制 长短期记忆神经网络 Short-term wind power prediction variational mode decomposition attention mechanism long and short-term memory neural network
  • 相关文献

参考文献22

二级参考文献350

共引文献1672

同被引文献105

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部