摘要
大规模储能是保障电网安全和提高可再生能源消纳的关键技术,是新能源进一步发展的战略核心。对基于金属氧化物的高温热化学储能技术进行了详细综述,分析表明,单一金属氧化物储能性能受制于循环稳定性和动力学速率,而掺杂钴、锰、铜以及钙钛矿型的金属氧化物的性能有较明显提升。在此基础上,构建了100 MW太阳能超临界二氧化碳布雷顿循环与金属氧化物储能耦合系统并建立了对应的稳态模型。模拟结果表明,在典型晴朗春分日,该系统循环热效率可达51.2%,光电转换效率可达25.2%,可实现24 h连续运行。
Large-scale energy storage is the key technology to ensure the safety of power grids and increase the consumption of renewable energy,and it is the strategic core of the further development of new energy.The researches on metal oxides forhigh-temperature energy storage technology is reviewed in detail.It is revealed that,the performance ofpure metal oxides are usually limited by cycle stability and kinetic rate,whilethe performance of metal oxides modified bycobalt,manganeseand copper as well as theperovskite metal oxides increases dramatically.On this basis,a100 MW solar supercriticalcarbon dioxideBrayton cycle integrated with metal oxide energy storage system is constructed,and the corresponding steady state model is established.The simulation results show that,the thermal efficiency of thispower cycle can reach 51.2%,and thesolar-to-electricity efficiency can reache25.2%,the system can realize24-hour operation at typical sunny equinox.
作者
杨天锋
向铎
袁鹏
聂婧
林诚乾
YANG Tianfeng;XIANG Duo;YUAN Peng;NIE Jing;LIN Chengqian(State Key Laboratory of Clean Energy Utilization,Zhejiang University,Hangzhou 310027,China;Hangzhou Mingsheng New Energy Technology Co.,Ltd.,Hangzhou 310023,China)
出处
《热力发电》
CAS
CSCD
北大核心
2022年第2期1-11,共11页
Thermal Power Generation
基金
国家自然科学基金项目(51906214)
关键词
高温储能
金属氧化物
太阳能热发电
超临界二氧化碳
布雷顿循环
high-temperatureenergystorage
metal oxide
solar thermal powergeneration
supercritical carbon dioxide
Brayton cycle