期刊文献+

融合多权重因素的低秩概率矩阵分解推荐模型 被引量:3

Probabilistic Matrix Factorization Recommendation Model Incorporating Multiple Weighting Factors
下载PDF
导出
摘要 针对个性化推荐精度较低、对冷启动敏感等问题,该文提出一种融合多权重因素的低秩概率矩阵分解推荐模型MWFPMF。模型利用给定的社交网络构建信任网络,借助Page rank算法和信任传递机制求取用户间信任度;基于Page rank计算用户社会地位,利用活动评分和评分时间修正用户间关系权重;引入词频-逆文本频率技术(TF-IDF)求取用户标签,通过标签相似性表征用户间同质性;将用户间信任度、用户社会地位影响力和用户同质性3因素融入低秩概率矩阵分解中,从而使用户偏好和活动特征映射到同一低秩空间,实现用户-活动评分矩阵的分解,在正则化约束下,最终完成低秩特征矩阵对用户评分缺失的有效预测。利用豆瓣同城北京和Ciao数据集确定各模块的参数设置值。通过仿真对比实验可知,本推荐模型获得了较高的推荐精度,与其他5种传统推荐算法相比,平均绝对误差至少降低了6.58%,均方差误差至少降低了6.27%,与深度学习推进算法相比,推荐精度基本接近;在冷启动用户推荐上优势明显,与其他推荐算法相比,平均绝对误差至少降低了0.89%,均方差误差至少降低了3.01%。 Considering the problems of low accuracy of personalized recommendation and sensitivity to cold start,low-rank Probabilistic Matrix Factorization recommendation model incorporating Multiple Weighting Factors(MWFPMF)is proposed;The trust network is constructed using a given social network,and the trust between users is calculated using the Page rank algorithm and trust transfer mechanism;The user’s social status is calculated based on Page rank,and the weight of the relationship between users is modified using activity scores and scoring time;Term Frequency-Inverse Document Frequency(TF-IDF)is introduced to take user tags,and the homogeneity between users is characterized by tag similarity;The three factors of trust among users,influence of users’social status,and user homogeneity are integrated into the low-rank probability matrix decomposition,so that user preferences and activity characteristics are mapped to the same low-rank space,and the user-activity scoring matrix is decomposed.Under the premise of regularization as a constraint,the effective prediction of the lack of user ratings by the low-rank feature matrix is finally completed.The data sets of Douban Beijing and Ciao are used to determine the parameter settings of each module.Through simulation and comparison experiments,it can be seen that this recommendation model obtains higher recommendation model accuracy.Compared with the other five traditional recommendation algorithms,the mean absolute error is reduced by at least 6.58%,and the mean square error is reduced by at least 6.27%,compared with the deep learning advancing algorithm,the recommendation accuracy is almost the same;It has obvious advantages in cold-start user recommendation.Compared with other recommendation algorithms,the average absolute error is reduced by at least 0.89%,and the mean square error is reduced by at least 3.01%.
作者 王丹 田广强 王福忠 WANG Dan;TIAN Guangqiang;WANG Fuzhong(School of Intelligent Engineering,Huanghe Jiaotong University,Jiaozuo 454950,China;School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2022年第2期552-565,共14页 Journal of Electronics & Information Technology
基金 国家重大专项子课题(22016YFC0600906) 2019年度河南省高等学校青年骨干教师培养计划(2019286) 河南省教育科学“十三五”规划(2020YB0404) 焦作市工程技术中心科研项目(201834) 黄河交通学院计算机科学与技术重点学科项目(201902)。
关键词 推荐算法 低秩概率矩阵分解 用户信任度 社会地位影响力 同质性 正则化约束 Recommendation algorithm Probabilistic matrix factorization User trust Social status influence Homogeneity Regularization constraints
  • 相关文献

参考文献2

二级参考文献28

  • 1Mayayise T, Olusegun OI. E-Commerce assurance models and trustworthiness issues: An empirical study. Journal of Information Management & Computer Security, 2014,22(1):76-96. [doi: 10.1108/IMCS-01-2013-0001 ].
  • 2Zhang J, Cohen R. A framework for trust modeling in multiagent electronic marketplaces with buying advisors to consider varying seller behavior and the limiting of seller bids. ACM Trans. on Intelligent Systems and Technology (TIST), 2013,4(2): 1-33. [doi: 10.1145/2438653.2438659].
  • 3Hoogendoorn M, Jaffry SW, van Maanen PP, Treur J. Design and validation of a relative trust model. Knowledge-Based Systems (KBS), 2014,57:81-94. [doi: 10.1016/j.knosys.2013.12.012].
  • 4Kennedy WG, Krueger F. Building a cognitive model of social trust within ACT-R. In: Proc. of the AAAI Conf. on Artificial Intelligence (AAAI). Palo Alto: AI Access Foundation, 2013.29-34.
  • 5Ivanov I, Vajda P, Korshunov P, Ebrahimi T. Comparative study of trust modeling for automatic landmark tagging. IEEE Trans. on Information Forensics and Security (TIFS), 2013,8(6):911-923. [doi: 10.1109/TIFS.2013.2242889].
  • 6Liu YH, Sun Y, Liu SY, Kot AC. Securing online reputation systems through trust modeling and temporal analysis. IEEE Trans. on Information Forensics and Security (TIFS), 2013,8(6):936-948. Idol: 10.1109/TIFS.2013.2238929].
  • 7Kuter U, Golbeck J. Using probabilistic confidence models for trust inference in Web-based social networks. ACM Trans. on Internet Technology, 2010,10(2): 1-23. [doi: 10.1145/1754393.1754397].
  • 8Tang I, Lou TC, Kleinberg J. Inferring social ties across heterogeneous networks. In: Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining (WSDM). Seattle: Association for Computing Machinery, 2012. 743-752. [doi: 10.1145/2124295. 2124382].
  • 9Rettinger A, Nickles M, Tresp V. Statistical relational learning of trust. Machine Learning, 2011,82(2):191-209. [doi: 10.1007/ s10994-010-5211-xl.
  • 10Hamed K, Bashah IN, Jamalul-lail AM. A unified trust model for pervasive environments-simulation and analysis. KSII Trans. on Internet & Information Systems, 2013,7(7):1569-1584. [doi: 10.3837/tiis.2013.07.003].

共引文献42

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部