期刊文献+

改进蚁群算法的柔性作业车间调度问题研究 被引量:10

Research on Flexible Job Shop Scheduling Problem Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 为提高传统蚁群算法求解柔性作业车间调度问题的效率,提出了一种改进蚁群算法。首先,均匀分布蚂蚁的初始位置;其次,多种方法结合进行机器选择,并按照改进的工序选择方式选择下一步即将遍历的工序;最后,采用带精英策略的蚁群算法结合最大最小蚂蚁系统的信息素更新方式,既赋予较优路径以额外的信息素,同时又对路径上的信息素进行限定、从而避免算法“早熟”,进而提高解的质量。通过三个柔性作业车间调度实例进行仿真分析和与其他算法的对比,结果表明改进蚁群算法在求解柔性作业车间调度问题具有较好的优化效果和求解效率。 In order to improve the efficiency of traditional ant colony algorithm in solving flexible job shop scheduling problems,an improved ant colony algorithm is proposed.First,evenly distribute the initial position of the ants;then,a combination of multiple methods for machine selection,and select the next step to be traversed according to the improved process selection method;finally,the ant colony algorithm with an elite strategy combined with the information of the maximum and minimum ant system The element update method not only gives extra pheromone to the better path,but also restricts the pheromone on the path,so as to avoid the algorithm"premature"and improve the quality of the solution.Through simulation analysis and comparison with other algorithms through three flexible job shop scheduling examples,the results show that the improved ant colony algorithm has better optimization effect and efficiency in solving flexible job shop scheduling problems.
作者 赵小惠 卫艳芳 王凯峰 倪奕棋 ZHAO Xiao-hui;WEI Yan-fang;WANG Kai-feng;NI Yi-qi(School of Mechanical and Electrical Engineering,Xi′an Polytechnic University,Xi′an 710048,China)
出处 《组合机床与自动化加工技术》 北大核心 2022年第2期165-168,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 陕西省教育厅专项科研计划项目(18JK0324) 陕西省社会科学界联合会项目(20ZD195-59)。
关键词 柔性作业车间调度 蚁群算法 精英策略 flexible job shop scheduling ant colony algorithm elite strategy
  • 相关文献

参考文献8

二级参考文献72

  • 1杨晓梅,曾建潮.遗传算法求解柔性job shop调度问题[J].控制与决策,2004,19(10):1197-1200. 被引量:34
  • 2吴秀丽,孙树栋,余建军,张红芳.多目标柔性作业车间调度优化研究[J].计算机集成制造系统,2006,12(5):731-736. 被引量:59
  • 3雷德明,吴智铭.Pareto档案多目标粒子群优化[J].模式识别与人工智能,2006,19(4):475-480. 被引量:25
  • 4余建军,孙树栋,郝京辉.免疫算法求解多目标柔性作业车间调度研究[J].计算机集成制造系统,2006,12(10):1643-1650. 被引量:27
  • 5Takeshi Yamada, Ryohei Nakana. Genetic algorithms for job-shop scheduling problems[A]. Proc of Modern Heuristic for Decision Support [C]. London, 1997. 67-81.
  • 6Jose Fernando Gonealves, Jorge Jose de Magalhaes Mendes, Maurieio G C Resende. A hybrid genetic algorithm for the job shop scheduling problem[R].AT&T Labs Research,2002.
  • 7Davis L. Handbook of Genetic Algorithms[M]. New York: Van Nostrand Reinhold, 1991.
  • 8Nasr N, Elsayed E A. Job shop scheduling with alternative machine[J]. Int J of Production Research, 1990,28(9): 1595-1609.
  • 9王万良,吴启迪.生产智能算法及其应用[M].北京:科学出版社,2007:12-13.
  • 10LEI D M. Multi-objective production scheduling: a survey [J]. In- ternational Journal of Advanced Manufacturing Technology, 2009, 43(9/10): 926 - 938.

共引文献143

同被引文献84

引证文献10

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部