期刊文献+

一种基于混合硬化本构模型的汽轮机轮盘榫槽疲劳寿命预测方法

A Method for Predicting Fatigue Life of Turbine Rotor Wheel Groove Based on Mixed Hardening Constitutive Model
下载PDF
导出
摘要 针对汽轮机转子轮盘的受力特点,以非对称载荷下材料的瞬态应力应变响应为基础,在内变量理论框架下,建立起某型汽轮机轮盘材料的率无关循环塑性本构模型;并结合局部应力应变法,进一步建立了基于混合硬化本构模型(N-5L1)描述平均应力松弛行为的汽轮机轮盘榫槽疲劳寿命预测方法。通过与实验结果相比较,表明混合硬化本构模型能够较好地模拟脉动加载下转子轮盘材料的循环应力应变响应及平均应力松弛行为,由此建立的寿命预测方法可对轮盘榫槽进行较为准确的疲劳寿命预测(与试验寿命误差总体落在1.5倍分散带以内),明显优于基于平均应力松弛经验公式的疲劳寿命预测值。 According to the stress characteristics of turbine rotor wheel and based on the transient stress-strain response of the material under asymmetric load,the rate-independent cyclic plastic constitutive model of the rotor wheel material of a turbine was established in theoretical framework of internal variables.Combined with the local stress and strain method,an approach for predicting the fatigue life of the turbine wheel groove was further established based on the mixed hardening constitutive model(N5L1)to describe the average stress relaxation behavior.Comparing with the experimental results,it showed that the mixed hardening constitutive model can well simulate the cyclic stress-strain response and average stress relaxation behavior of the rotor wheel material under pulsating loading.The established life prediction method can predict the fatigue life of the roulette mortisecan with good accuracy(the overall error with the test life is within 1.5 times of the dispersion zone),and it was obviously better than the predicted fatigue life based on the empirical formula of average stress relaxation.
作者 唐晶 王恭义 程凯 叶笃毅 TANG Jing;WANG Gongyi;CHENG Kai;YE Duyi(College of Energy Engineering,Zhejiang University,Hangzhou 310027,China;Shanghai Turbine Works Co.,Ltd.,Shanghai 200240,China)
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2022年第1期77-82,共6页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目(51675475)。
关键词 转子轮盘榫槽 混合硬化本构模型 局部应力应变 平均应力松弛 疲劳寿命预测 Rotor turbine wheel groove Mixed hardening constitutive model Local stress strain Mean stress relaxation Fatigue life prediction
  • 相关文献

参考文献3

二级参考文献24

  • 1杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(2):76-80. 被引量:203
  • 2陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2001.1-3.
  • 3Aghion E,Bronfin B,Eliezer D.The role of the magnesiumindustry in protecting the environment[J].Journal of Materi-als Processing Technology,2001,117(3):381-385.
  • 4Mordike B L,Ebert T.Magnesium properties-applications-potential[J].Materials Science and Engineering A,2001,302(1):37-45.
  • 5Sohn K Y,Jones J W,Berkmortel J,et al.Creep and boltload retention behavior of die cast magnesium alloys for hightemperature application[R].SAE Technical Paper Series,2000-01-1120,Warrendale,PA,2000.
  • 6Goodenberger D L,Stephens R I.Fatigue of AZ91E-T6 castmagnesium alloy[J].Journal of Engineering Materials andTechnology,1993,115(4):391-397.
  • 7Hyde C J,Sun W,Leen S B.Cyclic thermo-mechanical ma-terial modeling and testing of 316 stainless steel[J].Inter-national Journal of Pressure Vessels and Piping,2010,87(6):365-372.
  • 8Golos K,Ellyin F.A total strain energy density theory forcumulative fatigue damage[J].Journal of Pressure VesselTechnology,1988,110(1):36-41.
  • 9刘静安,谢水生.铝材在航空航天领域的开发[M].北京:冶金工业出版社,2004,223.
  • 10Manson,S. S.. Interfaees Between Fatigue, Creep, and Faeture [J]. International Journal of Fracture Mechanics, 1966, 2 (1) : 327-363.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部