摘要
制药行业生产工艺复杂,VOCs排放显著,是实施工业VOCs减排的重点行业。为落实制药行业VOCs减排策略,需准确识别重点排放企业和工艺过程。基于精细化工园区典型化学合成制药企业VOCs污染源成分谱,结合特征选择、分类分析、聚类分析等机器学习手段,进行了VOCs特征因子识别。结果表明:该企业VOCs排放的特征因子为甲苯、丙酮、乙醛、苯甲醛和正己烷;机器学习手段所识别的特征因子数量精简,在各个生产过程具有相似的浓度分布,体现了污染源VOCs排放物种组成上的差异。
Pharmaceutical industry,which has complex production processes and a serious VOCs emission problem,is a key industry for implementing VOCs emission reduction.To implement VOCs emission reduction,it is necessary to accurately identify key companies and production processes.Based on the VOCs source profiles of a typical chemical synthetic pharmaceutical factory in a fine chemical industrial park,the VOCs characteristic factors identification were carried out based on machine learning methods such as feature selection,classification analysis,and cluster analysis.The results showed that the VOCs emission characteristic factors were identified as toluene,acetone,acetaldehyde,benzaldehyde and n-hexane.The identified characteristic factors were obviously simplified by machine learning methods,and had similar concentration distribution in each production process.They could reflect the differences in the species composition of VOCs emission from pollution sources.
作者
景德基
程娜娜
蔡兴农
石展宏
杨春亚
李素静
王俏丽
李伟
JING Deji;CHENG Nana;CAI Xingnong;SHI Zhanhong;YANG Chunya;LI Sujing;WANG Qiaoli;LI Wei(College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310007,China;College of Environment,Zhejiang University of Technology,Hangzhou 310014,China)
出处
《能源环境保护》
2022年第1期77-82,共6页
Energy Environmental Protection
基金
浙江省重点研发计划项目(2021C03178,2021C03165)。
关键词
制药企业
VOCS
特征因子
机器学习
Pharmaceutical factory
VOCs
Characteristic factors
Machine learning