摘要
利用辛钦大数定律和随机变量序列依概率收敛的性质,通过不等式的放缩技巧,给出了样本的k阶中心绝对矩依概率收敛于总体的k阶中心绝对矩的证明.
Considering the problem of convergence in probability of the k-th order center absolute moment of the sample,using Khinchin’s law of large numbers and the property of convergence in probability of random variable sequences,and through inequality scaling techniques,the concrete proof is given that the k-th order central absolute moment of the sample converges with probability to the k-th order central absolute moment of the population.
作者
邢家省
杨义川
吴桑
XING Jiasheng;YANG Yichuan;WU Sang(School of Mathematics, Beihang University, Beijing 100191, China;LMIB of the Ministry of Education, Beihang University, Beijing 100191, China)
出处
《吉首大学学报(自然科学版)》
CAS
2021年第4期4-8,共5页
Journal of Jishou University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(11771004)
北京航空航天大学校级重大教改项目(北航培育项目201901—202112)。
关键词
样本矩
总体矩
中心绝对矩
依概率收敛
不等式
sample moment
population moment
center absolute moment
convergence in probability
inequality