期刊文献+

深度神经网络FPGA设计进展、实现与展望 被引量:13

Development,Implementation and Prospect of FPGA-Based Deep Neural Networks
下载PDF
导出
摘要 近年来,随着人工智能与大数据技术的发展,深度神经网络在语音识别、自然语言处理、图像理解、视频分析等应用领域取得了突破性进展.深度神经网络的模型层数多、参数量大且计算复杂,对硬件的计算能力、内存带宽及数据存储等有较高的要求.FPGA作为一种可编程逻辑器件,具有可编程、高性能、低能耗、高稳定、可并行和安全性的特点.FPGA与深度神经网络的结合成为推动人工智能产业应用的研究热点.本文首先简述了人工神经网络坎坷的七十年发展历程与目前主流的深度神经网络模型,并介绍了支持深度神经网络发展与应用的主流硬件;接下来,在介绍FPGA的发展历程、开发方式、开发流程及型号选取的基础上,从六个方向分析了FPGA与深度神经网络结合的产业应用研究热点;然后,基于FPGA的硬件结构与深度神经网络的模型特点,总结了基于FPGA的深度神经网络的设计思路、优化方向和学习策略;接下来,归纳了FPGA型号选择以及相关研究的评价指标与度量分析原则;最后,我们总结了影响FPGA应用于深度神经网络的五个主要因素并进行了概要分析. In recent years,with the development of artificial intelligence and big data technology,the deep neural network has made a breakthrough in many fields,such as speech recognition,natural language processing,image understanding,video analysis and so on.However,along with the increasing of neural network layers,a large number of parameters and complex calculations aggravate the requirements of hardware in computing power,memory bandwidth and data storage.FPGA,a programmable logic device,is of programmability,high performance,low energy consumption,high stability,parallelizability and security.The combination of FPGA and the deep neural network becomes a research hotspot to promote the industrial application of artificial intelligence.This paper introduces the development of the deep neural network in the past 70 years,the mainstream deep learning model and the fundamental hardware that support the development and application of deep neural network.Secondly,the research hotspots of FPGA combined with the deep neural network on the industrial applications are analyzed in six respects on the basis of introducing the development process,development mode,development process and type specification of FPGA.And then,the design idea,optimization direction and learning strategy of deep neural network based on FPGA are summarized according to the hardware structure of FPGA and the model characteristics of deep neural network.In addition,the model selection of FPGA together with the evaluation index and measurement analysis principle of related works are listed.Finally,we summarized the five main factors that affect the application of FPGA to deep neural networks and conducted a summary analysis.
作者 焦李成 孙其功 杨育婷 冯雨歆 李秀芳 JIAO Li-Cheng;SUN Qi-Gong;YANG Yu-Ting;FENG Yu-Xin;LI Xiu-Fang(Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,Xi’an 710071;International Research Center for Intelligent Perception and Computation,Xi’an 710071;Joint International Research Laboratory of Intelligent Perception and Computation,Xidian University,Xi’an 710071)
出处 《计算机学报》 EI CAS CSCD 北大核心 2022年第3期441-471,共31页 Chinese Journal of Computers
基金 国家自然科学基金重点项目(61836009) 国家自然科学基金创新研究群体科学基金(61621005) 国家自然科学基金(U1701267,61871310,61977052) 高等学校学科创新引智计划(111计划)(B07048) 重大研究计划(91438201) 陕西省2021年重点研发计划(2021ZDLGY02-08) 西安市科技产业化计划“人工智能”产业创新链推进工程(XA2020-RGZNTJ-0097) 教育部“长江学者和创新团队发展计划”(IRT_15R53)资助.
关键词 深度神经网络 FPGA 产业应用 硬件结构 设计思路 度量分析 deep neural network FPGA industrial application hardware structure design idea measurement analysis
  • 相关文献

参考文献2

二级参考文献9

  • 1刘海鹰,张兆杨,沈礼权.基于FPGA的H.264变换量化的高性能的硬件实现[J].中国图象图形学报,2006,11(11):1636-1639. 被引量:6
  • 2Amer I,Bedawy W,Jullien G.A proposed hardware reference model for spatial transformation and quantization in H.264[J].Journal of Visual Communication and Image Representation,2006,17(2):533-552.
  • 3Bruguera J D,Osorio R R.A unified architecture for H.264 multiple block-size DCT with fast and low cost quantization[C]//Proceedings of the 9th EUROMICRO Conference on Digital System Design(DSD'06).New York:Inst.of Elec.and Elec.Eng.Computer Society,2006:407-414.
  • 4Heng Yaolin,Yi Chihchao,Che Hongchen,et al.Combined 2-D transform and quantization architectures for H.264 video coders[C]//Proceedings of the International Symposium on Circuits and Systems.New York:Institute of Electrical and Electronics Engineers Inc.,2005:1802-1805.
  • 5Zhang Qidong,Li Ji,Cao Xixin,et al.A novel algoritjon and architecture of combined direct 2-D transform and quantization for H.264[J].The Journal of China Universities of Posts and Telecommunications,2007,14(Sup):79-83.
  • 6Pang Chungan,Yu Dunshan,Cao Xixin,et al.A new high throughput VLSI architecture for H.264 transform and quantization[C]//Proceedings of the 7th International Conferencse on ASIC.New York:Inst.of Elec.and Elec.Eng.Computer Society,2007:950-953.
  • 7Wang Leirui,Zhang Zhaoyang,Teng Guowei,et al.Hardware implementation of transform and quantization for AVS encoder[C]//Proceedings of the International Conforonce on Audio,Language and Image Processing.New York:Inst.of Elec.and Elec.Eng.Computer Society,2008:843-847.
  • 8何云壮,刘永强,李勇权.H.264整数DCT的FPGA实现[J].微计算机信息,2007,23(17):205-206. 被引量:7
  • 9陈瑛,赵刚,苏海冰.一种基于FPGA高性能H.264变换量化结构设计[J].现代电子技术,2009,32(10):19-21. 被引量:1

共引文献38

同被引文献104

引证文献13

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部