期刊文献+

基于L1最小范数法的波束形成方法参数研究

Research on Constraint Parameters of Beamforming Method Based on L1 Minimum Norm
下载PDF
导出
摘要 L1最小范数法的波束形成方法具有运行速度快、识别准确度高、分辨率好等优点,广泛应用于声源识别领域,然而因该方法参数选取较为困难,在使用中需要花费大量时间来试值。针对此问题,建立声源测量模型,研究不同条件下约束参数的取值。基于详细的理论推导与数值模拟仿真,分析约束参数[ε]与声源距离,信噪比和阵列孔径之间的关系。数值模拟结果表明:信噪比为10 dB到40 dB之间,测量距离大于0.5 m,测量阵列采用49个阵列单元时,可以实现声源的精确定位,并且约束参数的变化范围很小,在不同的频率下呈现一定的规律性。发现这种变化规律为参数选择提供了可靠的理论基础,可大大缩短取值的时间,具有很高的可行性。 The beamforming method based on L1 minimum norm method is widely used in the field of sound source recognition because of its fast operation,precise recognition and good resolution.However,due to the difficulty in selecting its parameters,this method need to consume a lot of computer time in trial-and-error calculation to get the correct results.In order to solve this problem,a sound source measurement model is established to find the values of constraint parameters under different conditions.Based on detailed theoretical derivation and numerical simulation,the relationship between the constraint parameters and sound source distance,SNR and array aperture is analyzed.The numerical simulation results show that when the SNR is between 10 dB and 40 dB,the measurement distance is greater than 0.5 m,and 49 array elements are used in the measurement array,the sound source can be accurately located,and the variation range of constraint parameters is very small,and the variation has a certain regularity in different frequencies.This variation law provides a reliable theoretical basis for parameter selection,greatly shortens the time of value selection,and has high feasibility.
作者 毛锦 孙健 刘凯 刘江 MAO Jin;SUN Jian;LIU Kai;LIU Jiang(School of Mechanical and Precision Instrument Engineering,Xi’an University of Technology,Xi’an 710048,China)
出处 《噪声与振动控制》 CSCD 北大核心 2022年第1期95-99,共5页 Noise and Vibration Control
基金 国家自然科学基金资助项目(61701397,51705419)。
关键词 振动与波 波束形成 压缩感知 L1最小范数 声源识别 vibration and wave beamforming compression sensing L1 minimum norm source recognition
  • 相关文献

参考文献2

二级参考文献15

  • 1LEE C, LEE J H. Robust adaptive array beamforming under steering vector[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(1): 168-175.
  • 2HALD J. Combined NAH and beamforming using the same microphone array[J]. Sound and Vibration, 2004, 38(12): 18-25.
  • 3BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4-5): 856-879.
  • 4FLEURY V, BULTI J. Extension of deconvolution algorithms for the mapping of moving acoustic sources[J] J. Acoust. Soc. Am, 2011, 129(3): 1417-1428.
  • 5GAUTHIER P A, CAMIER C, PASCO Y, et al. Beamforming regularization matrix and inverse problems applied to sound field measurement and extrapolation using microphone array[J]. Journal of Sound and Vibration, 2011, 330(24): 5852-5877.
  • 6SUZUKI T. L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources[J]. Journal of Sound and Vibration, 2011, 330(24): 5835-5851.
  • 7DOUGHERTY R P. Functional beamforming for aeroacoustic source distributions[C]// The 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, United States, June 16-20, 2014: 1-18.
  • 8CALVETTI D, MORIGI S, REICHEL L, et al. Tikhonov regularization and the L-curve for large discrete ill-posed problems[J]. Journal of Computational and Applied Mathematics, 2000, 123(1-2): 423-446.
  • 9FLAVIO P, PAULO Z, GUNTHER S, et al. Acoustic source identification using a generalized weighted inverse beamforming technique[J]. Mechanical Systems and Signal Processing, 2012, 32(10): 349-358.
  • 10WITKOWSKI A. A new proof of the monotonicity of power means [J]. Journal of Inequalities in Pure and Applied Mathematics, 2004, 5(1): 73-74.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部