摘要
高速动车组发生空气弹簧压力低故障后,车辆自动限速运行,需要停车检查或车辆入库后根据故障信息来推断故障原因。为了能在故障发生前进行预判,文章提出了基于模型的预测方法。模型以车载无线传输装置记录的历史故障数据和健康管理系统报表数据为故障预测的数据来源,通过分析静态和动态数据确认模型关联参数,从阈值、差值、空簧压力下降速率3个维度搭建预测模型,并通过实车跟踪,成功验证了模型的有效性。
After the low-pressure fault of air spring occurs in the high-speed EMU,the vehicle will automatically limits the speed.It is necessary to stop for the inspection or infer the fault cause according to the fault information after the vehicle is put into storage.In order to predict before the fault occurs,this paper proposes a model-based prediction method.The model uses the historical fault data recorded by the on-board wireless transmission device and the health management system report data as the data source for fault prediction.By analyzing the static and dynamic data,the model correlation parameters are confirmed,and the prediction model is built from the three dimensions of threshold,difference and air spring pressure drop rate.The effectiveness of the model is successfully verified by real vehicle tracking.
作者
马国栋
王智超
陈谦
李声涛
MA Guodong;WANG Zhichao;CHEN Qian;LI Shengtao(Technology Center of CRRC Qingdao Sifang Locomotive&Rolling Stock Co.,Ltd.,Qingdao 266111,China)
出处
《铁道车辆》
2022年第1期86-90,共5页
Rolling Stock
关键词
故障预测和健康管理
空气弹簧
自动限速
模型预测
关联参数
fault prediction and health management
air spring
limited speed automatically
model prediction
correlation parameters