摘要
以“公众健康问句分类”任务算法评测大赛参赛项目为例,阐述通过对开源标注数据进行训练提升模型对公众健康问句识别能力的方法,包括模型构建方法、数据描述与预处理、模型算法等,为相关研究提供参考。
Taking the competition event of“Classification of Public Health Questions”algorithm evaluation contest as an example,the paper presents a method to improve the model's ability to identify public health questions by training open-source annotated data,expounds the model construction method,data description and preprocessing,model algorithm and so on,and provides references for related study.
作者
谢甲琦
李政
XIE Jiaqi;LI Zheng(Department of Cardiology,the 8th Medical Center of Chinese PLA General Hospital,Beijing 100091,China;Dalian Shenhuo Technology Co.Ltd.,Dalian 116023,China)
出处
《医学信息学杂志》
CAS
2021年第12期33-36,43,共5页
Journal of Medical Informatics
关键词
公众健康
问句分类
深度学习
预训练语言模型
public health
question classification
deep learning
pre-trained language model