摘要
随着大数据和物联网(IoTs)的迅猛发展,人工智能(AI)技术受到了广泛关注。可克服冯·诺依曼瓶颈和提高串行计算机性能的光电神经形态器件在半导体器件和集成电路领域的发展迅猛。光信号具有低功耗、低串扰、高带宽和低计算要求等优点,可视为额外端口以丰富突触可塑性的调节自由度。光电器件的光电性能在很大程度上依赖于光电材料的设计、制备。其中,有机材料具备分子多样性、成本低、易加工、机械柔韧性以及与柔性基板兼容等优点,是构建高性能光电突触器件的重要材料载体。本文从有机材料出发,介绍了其在光电器件和视觉仿生领域应用的最新进展,并讨论了当前的应用挑战和未来发展趋势。
With the advent of big data and the Internet of Things(IoTs), Artificial Intelligence(AI) has received great attention from the global scientific and industrial communities. Photoelectric neuromorphic devices, which can overcome the von Neumann bottleneck issue of conventional computer systems, are developing rapidly. The optical signal, which has the advantages of low power consumption, low crosstalk, high bandwidth and low computational requirements, can be regarded as an additional terminal to enrich the regulatory freedom of synaptic plasticity. The optoelectronic performance of optoelectronic devices largely depends on the design and preparation of optoelectronic materials. With the advantages of molecular diversity, low cost, easy processing, mechanical flexibility and compatibility with flexible substrates, organic materials are important materials platform for constructing high performance optoelectronic synaptic devices. In this review,the latest development of organic materials in optoelectronic devices and visual bionics is introduced, and the current application challenges and future prospects of organic materials are discussed.
作者
郭延博
刘钢
GUO Yanbo;LIU Gang(Brain-Inspired and Smart Bionic Devices Laboratory,Department of Micro/Nano Electronics,School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong Univeristy,Shanghai 200240,China)
出处
《功能高分子学报》
CAS
CSCD
北大核心
2022年第1期5-18,共14页
Journal of Functional Polymers
基金
国家重点研发计划(2017YFB0405604)
国家自然科学基金(61974090,62004123)
上海市自然科学基金(19ZR1474500)
中国博士后科学基金(2020M671118)。
关键词
有机材料
有机-无机杂化材料
光电器件
光电突触
神经形态计算
organic material
organic-inorganic hybrid material
photoelectric device
photoelectric synapse
neuromorphic computing