摘要
深度学习技术近年来在合成孔径雷达(SAR)图像解译领域发展迅速,但当前基于数据驱动的方法通常忽视了SAR潜在的物理特性,预测结果高度依赖训练数据,甚至违背了物理认知。深层次地整合理论驱动和数据驱动的方法在SAR图像解译领域尤为重要,数据驱动的方法擅长从大规模数据中自动挖掘新模式,对物理过程能起到有效的补充;反之,在数据驱动方法中加入可解释的物理模型能提升深度学习算法的透明度,并降低模型对标记样本的依赖。该文提出在SAR图像解译应用领域发展物理可解释的深度学习技术,从SAR信号、特性理解到图像语义和应用场景等多个维度开展研究,并结合物理机器学习提出了几种在SAR解译中融合物理模型和深度学习模型的研究思路,逐步发展可学习且可解释的智能化SAR图像解译新范式。在此基础上,该文回顾了近两三年在SAR图像解译相关领域中整合数据驱动深度学习和理论驱动物理模型的相关工作,主要聚焦信号特性理解和图像语义理解两大方向,并结合研究现状和其他领域的相关研究探讨了目前面临的挑战和未来可能的发展方向。
Deep learning technologies have been developed rapidly in Synthetic Aperture Radar(SAR)image interpretation.The current data-driven methods neglect the latent physical characteristics of SAR;thus,the predictions are highly dependent on training data and even violate physical laws.Deep integration of the theory-driven and data-driven approaches for SAR image interpretation is of vital importance.Additionally,the data-driven methods specialize in automatically discovering patterns from a large amount of data that serve as effective complements for physical processes,whereas the integrated interpretable physical models improve the explainability of deep learning algorithms and address the data-hungry problem.This study aimed to develop physically explainable deep learning for SAR image interpretation in signals,scattering mechanisms,semantics,and applications.Strategies for blending the theory-driven and data-driven methods in SAR interpretation are proposed based on physics machine learning to develop novel learnable and explainable paradigms for SAR image interpretation.Further,recent studies on hybrid methods are reviewed,including SAR signal processing,physical characteristics,and semantic image interpretation.Challenges and future perspectives are also discussed on the basis of the research status and related studies in other fields,which can serve as inspiration.
作者
黄钟泠
姚西文
韩军伟
HUANG Zhongling;YAO Xiwen;HAN Junwei(School of Automation,Northwestern Polytechnical University,Xi’an 710072,China)
出处
《雷达学报(中英文)》
CSCD
北大核心
2022年第1期107-125,共19页
Journal of Radars
基金
国家自然科学基金(62101459)
中国博士后科学基金(BX2021248)
中央高校基本科研业务费专项资金(G2021KY05104)。
关键词
合成孔径雷达
可解释人工智能
物理模型
深度学习
图像解译
Synthetic Aperture Radar(SAR)
Explainable artificial intelligence
Physical model
Deep learning
Image interpretation