期刊文献+

长链非编码RNA在变应性鼻炎中的生物学机制研究进展 被引量:1

Research progress on biological mechanism of long non-coding RNA in allergic rhinitis
下载PDF
导出
摘要 长链非编码RNA(lncRNA)起初被认为是不具蛋白质编码功能的非编码RNA,随着检测技术的更新迭代,人们对其来源、分类、功能的认识逐渐深入,尤其在免疫调节方面,发现lncRNA起到关键的调节作用。变应性鼻炎(AR)为免疫调节失衡所产生的疾病,研究发现lncRNA与AR的发生发展密切相关。目前的研究以AR相关lncRNA表达谱差异分析和特异性lncRNA的生物学功能两大类为主,故本文从这两个方面对近年来的研究进行总结,使我们更好地认识lncRNA在AR生物学机制中的影响,也为AR的诊断及治疗提供新的思路。 Long non-coding RNA(lncRNA)was initially considered as a non-coding RNA without protein-coding function.With the update and iteration of sequencing technology,people have gradually deepened their understanding of its source,classification and function.Especially in the regulation of immunity,lncRNA was found to play a key role of regulatory.It is believed that allergic rhinitis(AR)is caused by imbalance of immune regulation.Studies have found that lncRNA is closely related to the occurrence and development of AR.The current research focuses on the differential analysis of AR-related lncRNA expression profiles and the biological functions of specific lncRNA.Therefore,this paper summarizes recent studies of lncRNA and AR.This will enable us to better understand the impact of lncRNA on the biological mechanism of AR.It also provides new ideas for the diagnosis and treatment of AR.
作者 王宇婷 王嘉玺 WANG Yuting;WANG Jiaxi(Department of Otorhinolaryngology,Oriental Hospital,Beijing University of Chinese Medicine,Beijing 100078,China)
出处 《中国耳鼻咽喉颅底外科杂志》 CAS 2022年第1期58-64,共7页 Chinese Journal of Otorhinolaryngology-skull Base Surgery
基金 第六批国家老中医药专家学术经验继承项目(20170615) 国家重点研发计划资助项目(2018YFC1704101)2021年度北京中医药大学附属医院校级课题(2021-BUCMXJKY010)。
关键词 变应性鼻炎 长链非编码RNA 免疫调节 表观遗传学 Allergic rhinitis Long non-coding RNA Immune regulation Epigenetics
  • 相关文献

参考文献1

二级参考文献41

  • 1Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146): 799-16.
  • 2Bertone P, Stoic V, Royce TE, et al. Global identification of human transcribed sequences with genome tiling arrays. Science, 2004, 306(5705): 2242-6.
  • 3Kampa D, Cheng J, Kapranov P, et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res, 2004, 14(3): 331-42.
  • 4Tian B, Hu J, Zhang H, et al. A large-scale analysis ofmRNA polyadenylation of human and mouse genes. Nucleic Acids Res, 2005, 33(1): 201-12.
  • 5Duret L, Chureau C, Samain S, et al. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science, 2006, 312(5780): 1653-5.
  • 6Hutchinson JN, Ensminger AW, Clemson CM, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 2007, 8:39.
  • 7Conley AB, Miller WJ, Jordan IK. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet, 2008, 24(2): 53-6.
  • 8Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet, 2006, 22(1): 1-5.
  • 9Pollard KS, Salama SR, King B, et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet, 2006, 2(10): e168.
  • 10Goodrich Jm, Kugel JF. Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev Mol Cell Biol, 2006, 7 (8): 612-6.

共引文献7

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部