期刊文献+

Screening of the ubiquitin-proteasome system activators for anti-Alzheimer’s disease by the high-content fluorescence imaging system 被引量:1

原文传递
导出
摘要 Ubiquitin-proteasome system(UPS)plays an important role in neurodegenerative diseases,such as Alzheimer’s disease(AD),Parkinson’s disease(PD),and Huntington’s disease(HD).The discovery of UPS activators for anti-neurodegenerative diseases is becoming increasingly important.In this study,we aimed to identify potential UPS activators using the high-throughput screening method with the high-content fluorescence imaging system and validate the neuroprotective effect in the cell models of AD.At first,stable YFP-CL1 HT22 cells were successfully constructed by transfecting the YFP-CL1 plasmid into HT22 cells,together with G418 screening.The degradation activity of the test compounds via UPS was monitored by detecting the YFP fluorescence intensity reflected by the ubiquitin-proteasome degradation signal CL1.By employing the high-content fluorescence imaging system,together with stable YFP-CL1 HT22 cells,the UPS activators were successfully screened from our established TCM library.The representative images were captured and analyzed,and quantification of the YFP fluorescence intensity was performed by flow cytometry.Then,the neuroprotective effect of the UPS activators was investigated in pEGFP-N1-APP(APP),pRK5-EGFP-Tau P301L(Tau P301L),or pRK5-EGFP-Tau(Tau)transiently transfected HT22 cells using fluorescence imaging,flow cytometry,and Western blot.In conclusion,our study established a high-content fluorescence imaging system coupled with stable YFP-CL1 HT22 cells for the highthroughput screening of the UPS activators.Three compounds,namely salvianolic acid A(SAA),salvianolic acid B(SAB),and ellagic acid(EA),were identified to significantly decrease YFP fluorescence intensity,which suggested that these three compounds are UPS activators.The identified UPS activators were demonstrated to clear AD-related proteins,including APP,Tau,and Tau P301L.Therefore,these findings provide a novel insight into the discovery and development of anti-AD drugs.
出处 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2022年第1期33-42,共10页 中国天然药物(英文版)
基金 the Joint Project of Luzhou Municipal People’s Government and Southwest Medical University(No.2020LZXNYDJ37) the National Natural Science Foundation of China(Nos.81903829 and 81801398) the Science and Technology Planning Project of Sichuan Province(Nos.2019JDPT0010 and 2020YJ0494) the Project of Southwest Medical University(Nos.2021ZKZD015,2021ZKZD018,and 2021-ZKMS046) Sichuan University Student Innovation and Entrepreneurship Project(Nos.2019424 and 201816032066).
  • 相关文献

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部