期刊文献+

Unveiling the origin of performance enhancement of photovoltaic devices by upconversion nanoparticles

下载PDF
导出
摘要 To better utilize the infrared(IR)region in sunlight for photovoltaic devices(PVs),upconversion nanoparticles(UCNPs)have been proposed to improve power conversion efficiency(PCE).However,researchers recently have found that the upconversion(UC)effect is negligible in PVs performance improvement for their ultra-low UC photoluminescence quantum yields of UCNPs solid film,while the real mechanism of UCNPs in PVs has not been clearly studied.Herein,based on the material inorganic perovskitesγ-CsPbI_(3),NaYF_(4):20%Yb^(3+),2%Er^(3+)UCNPs were integrated into different transport layer to optimize device performance.Compared with reference device,the short-circuit current density and PCE of optimized device reached 20.87 mA/cm^(2)(20.39 mA/cm^(2))and 18.34%(17.72%),respectively,without sacrificing open-circuit voltage and filling factor.Further experimental characterizations verified that the improved performance was attributable to enhanced visible light absorption instead of IR.To theoretically explain the statement,the light field distribution in device was simulated and the absorption in different layers was calculated.The results revealed that the introduction of UCNPs with different refractive index from other layers caused light field disturbance,and improved visible light captured by γ-CsPbI_(3).Importantly,through experiments and theoretical calculation,the research deeply explored the potential mechanism of UCNPs in optimizing PVs performance.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期524-531,共8页 能源化学(英文版)
基金 funded by the National Natural Science Foundation of China(52073131,51902148,61874166,51802024,11974069 and U1832149) the Fundamental Research Funds for the Central Universities(lzujbky-2020-61,lzujbky-2020-64,lzujbky-2021-it31,lzujbky-2021-ct15 and lzujbky-2021-ct01) the Natural Science Foundation of Gansu Province(20JR5RA278 and 20JR5RA24) the LiaoNing Revitalization Talents Program(XLYC1902113) the Science and Technology Program of Qinghai Province(2020-HZ-809)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部