期刊文献+

Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO_(2)/Ti_(3)C_(2)Tx composite anodes 被引量:2

下载PDF
导出
摘要 Uncontrollable Li dendrite growth and infinite volume fluctuation during durative plating and stripping process gravely hinder the application of metallic Li electrode in lithium-oxygen batteries.Herein,oxygen vacancy-rich TiO_(2)(Vo-TiO_(2))nanoparticles(NPs)uniformly dispersing on Ti_(3)C_(2)T_(x)(Vo-TiO_(2)/Ti_(3)C_(2) T_(x))with excellent lithiophilicity feature are presented as effective composite anodes,on which a dense and uniform Li growth behavior is observed.Based on electrochemical studies,mutiphysics simulation and theoretical calculation,it is found that Vo-TiO_(2) coupling with three dimensional(3 D)conductive Ti_(3)C_(2) T_(x) MXene forms highly ordered lithiophilic sites which succeed in guiding Li ions flux and adsorption,thus modulating the uniform Li nucleation and growth.As a result,this composite electrode is capable of preserving Li with high areal capacity of~10 mAh cm^(-2) without the presence of dendrites and large volume expansion.Consequently,the as-prepared Vo-TiO_(2)/Ti_(3)C_(2) T_(x)@Li anode shows outstanding performance including low voltage hysteresis(~19 mV)and superior durability(over 750 h).When assembling with the Vo-TiO_(2)/Ti_(3)C_(2) T_(x)@Li anodes,lithium-oxygen batteries also deliver enhanced cycling stability and improved rate performance.This work demonstrates the effectiveness of oxygen vacancies in guiding Li nucleating and plating behavior at initial stage and brings a promising strategy for promoting the development of advanced Li metal-based batteries.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期654-665,共12页 能源化学(英文版)
基金 financially supported by the National Natural Science Foundation of China(Grant No.21905033) the Science and Technology Department of Sichuan Province(Grant No.2019YJ0503) the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(2020P4FZG02A)。
  • 相关文献

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部