期刊文献+

基于块聚类匹配与PCA的图像去噪方法研究 被引量:1

The Research of Image Denoising Based on Block Clustering Matching and PCA
下载PDF
导出
摘要 图像去噪是图像处理领域的重要研究方向,局部块匹配和主成分分析法是图像去噪处理的重要手段,传统的块匹配算法只在固定的窗口范围内进行一次相似度的块筛选,这种搜索方式保留了图像的局部特征但对纹理的保护较差,图像存在失真模糊的现象.为解决这一问题,将聚类匹配和局部筛选相结合,通过聚类类别对样本块进行进一步筛选,同时对匹配窗口的大小进行自适应调整,这种方法可以更好地平衡图像的纹理细节与整体噪声去除之间的矛盾.借助自适应块聚类匹配和主成分分析法对图像进行降噪处理,实验表明,改进后的算法比传统块匹配PCA算法具有更好的去噪效果. Image denoising is an important research direction in the field of image processing.Local-block-matching algorithm and principal component analysis are important means of image denoising processing.The traditional block-matching algorithm only do the similarity screening once,this searching has strong locality and poor texture protection,which blurs the image.In order to solve this problem,this paper combines cluster matching and partial screening,further screens sample blocks by clustering category,and adaptively adjusting the size of the matching window.It can keep balance between the texture details and overall noise removal better.Base on self-adaption block clustering matching and principal component analysis method,the image is denoised.Experiments show that the improved algorithm has better denoising effect than the traditional block matching PCA algorithm.
作者 孟凡云 韩志 田玉铢 王帅 MENG Fanyun;HAN Zhi;TIAN Yuzhu;WANG Shuai(Qingdao University of Technology,School of Information and Control Engineering,Qingdao 266525,Shandong,China;Dalian University of Technology,School of Mathematical Sciences,Dalian 116024,Liaoning,China)
出处 《汕头大学学报(自然科学版)》 2022年第1期25-37,共13页 Journal of Shantou University:Natural Science Edition
基金 山东省自然科学基金项目(ZR2019BA014) 山东省重点研发计划(2019GGX104089)。
关键词 图像去噪 主成分分析PCA 图像聚类 聚类块筛选 image denoising principal component analysis image cluster cluster block screening
  • 相关文献

参考文献6

二级参考文献48

  • 1费佩燕,郭宝龙.基于多小波的图像去噪技术研究[J].中国图象图形学报(A辑),2005,10(1):107-112. 被引量:17
  • 2芮挺,王金岩,沈春林,丁健.基于PCA的图像小波去噪方法[J].小型微型计算机系统,2006,27(1):158-161. 被引量:12
  • 3董鸿燕,扬卫平,沈振康.基于Contourlet变换的自适应图像去噪方法[J].红外技术,2006,28(9):552-556. 被引量:18
  • 4Pearson K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine, 1901, 10:339-348.
  • 5Sirovich L, Kirby M. Low-dimensional procedure for characterization of human faces[J]. J Optical Soc Am, 1987, 4:519-524.
  • 6Turk M, Pentland A. Eigenfaces for recognition[J]. Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 7Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A new approach to appearance-based face representation and recognition[J]. IEEE Transactions on PAMI, 2004, 26(1): 131-137.
  • 8王松桂.线性模型的理论与应用[M].合肥:安徽教育出版社,1986.
  • 9Jeong B, Lee Y H. Design of weighted order statistic filter using the perception algorithm[J]. IEEE Transactions on Signal Processing, 1994.
  • 10王松桂.主成分的最优性与广义主成分估计类[J].应用概率统计,1985,(1).

共引文献88

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部