期刊文献+

RobustDEA:一种快速鲁棒的RNA-Seq数据寻找差异表达基因方法

RobustDEA:A fast and robust method for finding differentially expressed genes on RNA-Seq data
下载PDF
导出
摘要 第二代高通量RNA-Seq测序技术已成为转录组分析的标准技术手段.寻找差异表达基因作为RNA-Seq测序数据分析中最基本任务之一,提出了大量的分析方法.但是这些不同方法检测出的差异基因往往存在结果不一致性,并且综述性评估已经证明单一方法无法在所有数据集中一直保持优势.因此,提出了一种快速鲁棒的RNA-Seq数据寻找差异表达基因方法RobustDEA,通过自动加权方式结合多种寻找差异表达基因方法,其权值可快速的数据集中学习获得,能有效的体现不同数据集的特点,从而使得RobustDEA方法在不同数据集上都可获得稳定的结果.通过包含qRT-PCR验证的人类大脑数据集和多个老鼠数据集的评估,相比于单个差异表达基因方法和其他结合方法,RobustDEA方法都能获得最准确的预测结果,且表现出很好的鲁棒性能.此外,与PANDOR结合方法相比,RobustDEA方法能大幅度提高计算效率. The next-generation high-throughput RNA-Seq sequencing technology has become the standard and important technique for transcriptome analysis.Finding differentially expressed genes is one of the most basic tasks in RNA-Seq data analysis,and a large number of statistic methods have been proposed.However,the differential genes detected by these methods are often inconsistent.Some systematic evaluation experiments have proved that no single method can maintain its advantages in all RNA-Seq datasets.Therefore,we propose a fast and robust method for finding differentially expressed genes in RAN-Seq data.RobustDEA combines multiple methods by weighting,and its weights can be quickly learned from the dataset.Because these weights reflect the characteristics of the dataset,RobustDEA is able to obtain stable results on various RNA-Seq datasets.A human brain dataset with qRT-PCR validation,mouse and rat RNA-Seq datasets are used to evaluate our proposed method.Compared dataset with any single method and other combined methods,RobustDEA obtains the most accurate results and shows better robustness.In addition,RobustDEA can significantly improve computational efficiency compared with PANDOR.
作者 张礼 王嘉瑞 吴东洋 ZHANG Li;WANG Jiarui;WU Dongyang(College of Computer Science and Technology, Nanjing Forestry University, Nanjing 210016, China)
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2021年第6期51-58,共8页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学青年基金资助项目(61802193) 江苏省自然科学基金资助项目(BK20170934) 南京林业大学青年科技创新基金资助项目(CX2017031) 南京林业大学大学生创新训练计划项目(2018NFUSPITP452) 汕尾市省级科技创新战略专项资金资助项目(2018D2002)。
关键词 转录组分析 RNA-SEQ 差异表达基因 transcriptome analysis RNA-Seq differentially expressed genes
  • 相关文献

参考文献1

二级参考文献35

  • 1Mortazavi A, Williams A, McCue K, Schaeffer L, Wold B. Map- ping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
  • 2Marioni J, Mason C, Mane S, Stephens M, Gilad Y. RNA-seq: an as- sessment of technical reproducibility and comparison with gene ex- pression arrays. Genome Research, 2008, 18:1509-1517.
  • 3Marguerat S, Bahler J. RNA-seq: from technology to biology. Cellular and Molecular Life Sciences, 2010, 67(4): 569-579.
  • 4Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason C E, Socci N D, Betel D. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 2013, 14(9): R95.
  • 5Zhang Z H, Jbaveri D J, Marshall V M, Bauer D C, Edson J, Narayanan R K, Zhao Q. A comparative study of techniques for differential expres- sion analysis on RNA-Seq data. PLoS ONE, 2014, 9:e103207.
  • 6Ozsolak F, Milos E RNA sequencing: advances, challenges and oppor- tunities. Nature Reviews Genetics, 2011, 12(2): 87-98.
  • 7Soneson C, Delorenzi M. A comparison of methods for differential ex- pression analysis of RNA-seq data. BMC Bioinformatics, 2013, 14(1): 9.
  • 8Kvam V, Lu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from Rna-Seq data. American Journal of Botany, 2012, 99(2): 248-256.
  • 9Seyednasrollah F, Laiho A, Elo L L. Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in bioinformatics, 2013, bbt086.
  • 10Anders S, McCarthy D J, Chen Y, Okoniewski M, Smyth G K, Hu- ber W, Robinson M D. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols, 2013, 8(9): 1765-1786.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部