摘要
依据蚁群算法和分布估计算法的思想,提出一种混合优化算法,改进解旅行商问题的蚁群算法,在初始化时随机产生一些解,选择较优的路径留下信息素;蚂蚁每次周游结束后,挑选比较好的解才留下信息素,并且分析了选择较好个体的比例对算法的影响.通过实例,结果表明分布估计算法比模拟退火算法、遗传算法效果好.
Based on the idea of ant colony and distribution estimation algorithm,a hybrid optimization algorithm is proposed.In the ant colony algorithm,the improved method generates some solutions randomly at the time of initialization,chooses the better paths to leave the pheromone,and selects the better solutions to leave the pheromone after the end of the tour.The better population selection proportions are analyzed by examples.Compared with simulated annealing algorithm and genetic algorithm,the hybrid algorithm is most effective.
作者
潘澔
孙俐
高尚
PAN Hao;SUN Li;GAO Shang(Suzhou Institute of Construction & Communications, Suzhou 215104, China;School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China)
出处
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2021年第6期59-63,共5页
Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词
旅行商问题
蚁群算法
分布估计算法
traveling salesman problem
ant colony algorithm
distribution estimation algorithm