摘要
在金线莲粉末中掺入同科台湾银线莲或斑叶兰、血叶兰粉末的现象严重影响了金线莲药材的药效和市场秩序,寻找一种快速有效的方法来鉴别掺假金线莲是亟待解决的问题。针对传统鉴别方法特征提取自适应性的不足以及卷积神经网模型结构复杂、超参数难以调节的难点,本文提出基于一维卷积神经网络的掺假金线莲鉴别模型,并利用贝叶斯优化算法优化卷积神经网络超参数,实现了超参数自动优化调节。实验结果表明,经过超参数寻优后的卷积神经网络相比传统机器学习模型更有竞争力,所提出的基于贝叶斯优化的一维卷积神经网络模型可以快速有效地鉴别金线莲及其伪品。
The phenomenon of mixing the same family of Anoectochilus roxburghii(A.roxburghii)powder with the genus Anoectochilus formosanus or Goodyera schlechtendaliana,Ludisia discolor has seriously affected the drug efficacy and market order of A.roxburghii.Therefore,finding a fast and effective method to identify adulterated A.roxburghii is an urgent problem to be solved.In view of the shortcomings of the adaptive feature extraction of traditional identification methods and the difficulties of complex structure and difficult adjustment of super parameters of convolution neural network model,an adulterated A.roxburghii identification model based on 1D convolutional neural network(1D-CNN)was proposed in this paper,in which the Bayesian optimization algorithm was proposed to optimize its hyperparameters to realize automatic optimization and adjustment of the hyperparameters.Experimental results showed that the 1D-CNN model with hyperparameter optimization was more competitive than other traditional machine learning models.The proposed 1D-CNN model based on Bayesian optimization can quickly and effectively identify A.roxburghii and its counterfeits.
作者
柴琴琴
曾建
张勋
CHAI Qinqin;ZENG Jian;ZHANG Xun(College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China;Ministry of Education Key Laboratory of Medical Instrument and Pharmaceutical Technology,Fuzhou University,Fuzhou 350108,China;Jinjiang Science and Education Park of Fuzhou University,Jinjiang 362251,Fujian,China;School of Pharmacy,Fujian University of Traditional Chinese Medicine,Fuzhou 350122,China)
出处
《浙江农业学报》
CSCD
北大核心
2022年第2期391-396,共6页
Acta Agriculturae Zhejiangensis
基金
国家自然科学基金(61773124)
福州大学晋江科教园科研项目(2019-JJFDKY-48)。
关键词
卷积神经网络
金线莲
定性分析
化学计量学方法
贝叶斯优化
convolutional neural network
Anoectochilus roxburghii
qualitative analysis
chemometrics
Bayesian optimization