期刊文献+

复杂产品的关键质量特性识别 被引量:2

Identification of Critical-to-Quality for Complex Products
下载PDF
导出
摘要 针对复杂产品关键质量特征特性识别中存在的数据高维度、小样本、不平衡问题,提出一种基于Bootstrap K-split Lasso(B-K-Lasso)的关键质量特征识别方法,并采用UCI数据库中的SECOM数据集进行仿真实验。结果表明:该方法能够有效识别复杂产品的关键质量特性,并且对不合格品的识别率显著提升。 In order to solve the problems of high dimensions, small sample size and unbalanced data in the recognition of critical-to-quanlity of complex products, this paper proposes a critical-to-quanlity recognition method based on Bootstrap K-split Lasso(B-K-split Lasso). The simulation results of SECOM data set in UCI database show that this method can effectively identify the critical-to-quanlity of complex products and significantly improve the accuracy of nonconforming products.
作者 李秀 LI Xiu(Business School of Zhengzhou University,Zhengzhou 450001)
机构地区 郑州大学商学院
出处 《现代制造技术与装备》 2022年第1期218-221,共4页 Modern Manufacturing Technology and Equipment
关键词 复杂产品 关键质量特性(CTQ) B-K-Lasso complex products Critical-To-Quality(CTQ) B-K-Lasso
  • 相关文献

参考文献5

二级参考文献55

  • 1王克明,熊光楞.复杂产品的协同设计与仿真[J].计算机集成制造系统-CIMS,2003,9(z1):15-19. 被引量:28
  • 2李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 3李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 4李伯虎.复杂产品制造信息化的重要技术——复杂产品集成制造系统[J].中国制造业信息化(应用版),2006(7):18-23. 被引量:25
  • 5Brock G N, Shaffer J R, Blakesley R E, et al. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes[J]. BMC Bio- informatics, 2008, 9:12.
  • 6Saeys Y, Lnza I, Larrafiaga P technique in bioinformatics[J] 2507-2517.
  • 7A review of feature selection Bioinformatics, 2007, 23(19) Golub T R, Slonim D K, Tamayo P, et al. Molecular classifi- cation of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999, 286(5439): 531-537.
  • 8Li Leping, Weinberg C R, Darden T A, et al. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method[J]. Bioinformatics, 2001, 17(12): 1131-1142.
  • 9Chen Xuewen. Margin-based wrapper methods for gene identification using microarray[J]. Neurocomputing, 2006, 69(16/18): 2236-2243.
  • 10Ram6n D U, Sara A A. Gene selection and classification of microarray data using random forest[J]. BMC Bioinformatics, 2006, 7: 3.

共引文献102

同被引文献30

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部