摘要
从广义Kaup-Newell谱问题出发,得到耦合Gerdjikov-Ivanov(GI)方程,利用Wronskian技巧,导出耦合GI方程的双Wronskian解,进而将双Wronskian元素满足的条件推广至矩阵形式,给出孤子解及有理解。
Starting from the generalized Kaup-Newell spectral problem,the coupled Gerdjikov-Ivanov(GI)equation is obtained.Using the Wronskian technique,the double Wronskian solution of the coupled GI equation is derived,then the conditions satisfied by double Wronskian entries are extended to the matrix form.Furthermore,soliton solutions and rational solutions are obtained.
作者
翟子璇
李琪
段求员
林清芳
ZHAI Zixuan;LI Qi;DUAN Qiuyuan;LIN Qingfang(School of Science,East China University of Technology,330013,Nanchang,PRC;Basic Teaching Department,Fuzhou Vocational College of Technology,344000,Fuzhou,Jiangxi,PRC)
出处
《江西科学》
2022年第1期7-10,21,共5页
Jiangxi Science
基金
国家自然科学基金项目(11561002、11861006)
江西省教育厅科技项目(GJJ191419)
东华理工大学研究生创新基金项目(DHYC-202116)。