期刊文献+

基于深度学习的手写文字识别 被引量:4

Handwritten Word Recognition Based on Deep Learning
下载PDF
导出
摘要 当前越来越多的场景需要将手写体的文字转换为电子格式,手写体识别成为人机交互最便捷的手段之一,拥有广泛的应用前景。文章提出了一种基于TensorFlow框架的深度学习手写识别方法,包含手写数字识别和手写汉字识别。以TensorFlow为框架,采用CNN神经网络模型建立训练集以降低识别错误率。实验结果最终表明,对手写数字的识别率达到95%,对手写汉字的识别率达到90%。 At present,more and more scenes need to convert handwritten words into electronic format.Handwritten recognition has become one of the most convenient means of human-computer interaction and has a wide application prospect.This paper proposes a deep learning handwriting recognition method based on TensorFlow framework,including handwritten numeral recognition and handwritten Chinese character recognition.Taking TensorFlow as the framework,the CNN neural network model is used to establish a training set to reduce the recognition error rate.The experimental results finally show that the recognition rate of handwritten numeral reaches 95%,and the recognition rate of handwritten Chinese characters reaches 90%.
作者 万茹月 海玲 谷铮 刘文 WAN Ruyue;HAI Ling;GU Zheng;LIU Wen(School of Control Engineering,Xinjiang Institute of Engineering,Urumqi 830023,China)
出处 《现代信息科技》 2021年第19期89-91,96,共4页 Modern Information Technology
关键词 TensorFlow 手写字体识别 深度学习 人工智能 TensorFlow handwritten word recognition deep learning artificial intelligence
  • 相关文献

同被引文献44

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部