期刊文献+

基于DPM模型的U形管道内燃油压降及换热特性研究

Research on Fuel Pressure Drop and Heat Transfer Characteristics of U-shaped Pipe Based on DPM
下载PDF
导出
摘要 为探究民用航空器燃油系统换热器内燃油流动特性和换热特性的规律,本文建立了换热器的U形管道简化模型,利用DPM模型进行了数值模拟研究,对比了附加质量力和含水率对管道压降与传热的影响。研究结果表明,压降计算受到附加质量力和含水率的影响,加入附加质量力和含水率增高会使压降计算升高,但附加质量力和含水率对管道出口温度影响较小。另一方面,在U形管道中,弯管区域的换热效果远强于直管区域,且随着含水率的增高,换热效果随之增强。 In order to explore the laws of fuel flow characteristics and heat transfer characteristics in the heat exchanger of the civil aircraft fuel system,a simplified model of the U-shaped pipe of the heat exchanger is established in this paper,and the DPM model is used to conduct a numerical simulation study,and compare the additional mass force and The effect of moisture content on pressure drop and heat transfer in pipes.The research results show that the calculation of pressure drop is affected by the additional mass force and water content.Adding additional mass force and water content will increase the pressure drop calculation,but the additional mass force and water content have little effect on the outlet temperature of the pipeline.On the other hand,in the U-shaped pipe,the heat transfer effect of the elbow area is much stronger than that of the straight pipe area,and with the increase of the water content,the heat transfer effect is enhanced.
作者 王新河 李迪 纪学玮 徐擎立 焦兆才 刘翔 张天来 WANG Xin-he;LI Di;JI Xue-wei;XU Qing-li;JIAO Zhao-cai;LIU Xiang;ZHANG Tian-lai(China Aviation Fuel Co.,Ltd.,Beijing 100088,China;Civil Aviation Flight University of China,Guanghan 618307,China)
出处 《内燃机与配件》 2022年第4期33-35,共3页 Internal Combustion Engine & Parts
关键词 燃油系统换热器 流动特性 换热特性 压降 fuel system heat exchanger flow characteristics heat transfer characteristics pressure drop
  • 相关文献

参考文献5

二级参考文献24

  • 1Kolmogorov A N. On the breaking of drops in turbulent flow[J].DokladyAkad. Nauk. , 1949, 66:825-828.
  • 2Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processe[J].AIChEJ. , 1955, 1: 289-295.
  • 3Clay P H. The mechanism of emulsion formation in turbulent flow[J]. Proc. R. Acad. Sci. , 1940, 43:852-965.
  • 4Sleicher Jr C A. Maximum stable drop size in turbulent flow [J]. AIChEJ., 1964, 8 (4): 471-477.
  • 5Kubie J, Gardner G C. Drop sizes and drop dispersion in straight horizontal tubes and helical coils [J]. Chem. Eng. Sci. , 1977, 32:195-202.
  • 6Angeli P, Hewitt G F. Drop size distributions in horizontal oil-water dispersed flows[J]. Chem. Eng. Sci. , 2000, 55 : 3133-3143.
  • 7Brauner N, Ullmann A. Modeling of phase inversion phenomenon in two-phase pipe flow[J].Int. J. Multiphase Flow, 2002, 28:1177-1204.
  • 8Zhang H Q, Wang Q, Sarica C, Brill J P. A unified mechanistic model for slug liquid holdup and transition between slug and dispersed bubble flows [J].Int. J. MultiphaseFlow, 2003, 29 (1): 97-107.
  • 9Taitel Y, Dukler A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow [J]. AIChEJ., 1976, 22 (1): 47-55.
  • 10Chen X T, Cai X D, Brill J P. A general model for transition to dispersed bubble flow [J]. Chem. Eng. Sci. , 1997, 52 (23): 4373-4380.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部