期刊文献+

基于优化模型车辆路径跟踪控制研究

Vehicle Path Tracking Based on Optimized Model
下载PDF
导出
摘要 路径跟踪是实现自动驾驶的基础,而根据模型的几何关系实现路径跟踪是一种非常实用的方法.传统的几何控制模型简单可靠、易于改进,但向前预瞄的局限使得此模型在大曲率、高速等极限工况下的跟踪效果较差.为了使几何控制模型的鲁棒性更好、控制精度更高,本文同样基于几何关系控制的原理提出一种优化模型,取消了固定预瞄的计算方式,采用自适应预瞄在预瞄区间中寻找最佳目标点,在转角控制上采用了前馈控制对转角控制进行修正,联合MATLAB和Prescan仿真软件进行仿真测试,并进行实车实验.实验结果表明:该优化模型能够适应多数场景,相较于传统的控制模型,改进了一些缺陷,增加了控制的稳定性,提高了跟踪精度,能够稳定地用于实车开发. Path tracking is the basis of autonomous driving,and it is a very practical method to realize vehicle path tracking according to geometric relationship.Traditional geometric control model is simple,reliable and easy to improve,but the limitation of forward preview makes the tracking effect worse under the extreme conditions of large curvature and high speed.In order to make the geometric control model more robust and more accurate,in this article we propose an optimized model based on the principle of geometric relationship,which cancels the calculation method of fixed preview.In our optimized model we first used adaptive preview to find the best target point in the preview interval and feed-forward control to modify the angle control.Then we conducted simulation tests with MATLAB and Prescan simulation software as well as actual vehicle experiment.The experimental result showed that the optimized model could adapt to many scenarios.Compared with the traditional control model,our optimized model has improved some defects,increased the stability of the control and improved the tracking accuracy.It can be stably used in the development of actual vehicles.
作者 陈思 韩愈 唐超 林业 CHEN Si;HAN Yu;TANG Chao;LIN Ye(College of Mechanical Engineering,Tianjin University of Science&Technology,Tianjin 300222,China)
出处 《天津科技大学学报》 CAS 2022年第1期37-45,80,共10页 Journal of Tianjin University of Science & Technology
关键词 自动驾驶 几何模型 路径跟踪 预瞄区间 反馈控制 autonomous driving geometric model path tracking preview area feedback control
  • 相关文献

参考文献6

二级参考文献53

  • 1管欣,张立存,高振海.驾驶员确定汽车预期轨迹的网格式优化模型[J].中国机械工程,2006,17(15):1641-1644. 被引量:5
  • 2MACADAM C C. Understanding and modeling the human driver[J]. Vehicle System Dynamics, 2003, 40(1-3).. 101-134.
  • 3LIN Y, TANG P, ZHANG W J, et al. Artificial neural network modeling of driver handling behavior in a driver-vehicle-environment system[J]. International Journal of Vehicle Design, 2005, 37(1): 24-45.
  • 4DING Haitao, GUO Konghui, WAN Fang, et al. An analytical driver model for arbitrary path following at varying vehicle speed[J]. Int. J. of Vehicle Autonomous System, 2007, 5(3-4): 204-218.
  • 5GUO Konghui, DING Haitao, ZHANG Jianwei, et al. Development of a longitudinal and lateral driver model for autonomous vehicle control[J]. International Journal of Vehicle Design, 2004, 36(1): 50-65.
  • 6MACADAM C C. Understanding and modeling the human driver[J]. Vehicle System Dynamics, 2003, 40(1-3): 101-134.
  • 7PLOCHL M, EDELMANN J. Driver models in automobile dynamics application[J]. Vehicle System Dynamics, 2007, 45(7-8): 699-741.
  • 8MACADAM C C. Application of an optimal preview control for simulation of closed-loop automobile driving[J]. IEEE Transactions on Systems, Man and Cybernetics, 1981(6): 393-399.
  • 9HATTORI Y, ONO E, HOSOE S. Optimum vehicle trajectory control for obstacle avoidance problem[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(5): 507-512.
  • 10FALCONE P, BORRELLI F, ASGARI J, et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(3): 566-580.

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部