摘要
风电的不确定性和高渗透率,导致电网调度控制难和电网惯量下降等问题,为此提出了基于混合储能的功率分配系数自适应控制策略和基于T-S模糊神经网络的调频功率自适应控制策略。首先,对风场混合储能系统健康状态进行评估;其次,功率分配系数自适应控制器根据各组混合储能系统健康状态系数对风场所有风机输出总功率和调度功率之间的差值进行分配,实现电网调度功率跟踪;最后,调频功率自适应控制器根据电网频率偏差和各组混合储能系统健康状态控制各组混合储能系统为电网提供频率支撑。仿真分析表明,所提出的功率分配系数自适应控制策略能有效分配功率差,减小电网调度控制难度;调频功率自适应控制策略能有效增加电网惯量,为电网提供频率支撑。
The uncertainties and high permeability of gridconnected wind power increases the difficulty of the power grid dispatching capability and reduces the inertia of the power grid.Therefore,this paper proposes a power allocation coefficient adaptive control strategy based on hybrid energy storage and a frequency-modulated power adaptive control strategy based on T-S fuzzy neural network. Firstly,the health state of the wind farm hybrid energy storage system is evaluated. Secondly,according to the health state of each group of hybrid energy storage systems, the power allocation coefficient adaptive controller allocates the difference between the total output power of all turbines in the wind farm and the dispatching power,so as to realize the tracking of power grid dispatching. Finally,the frequency-modulated power adaptive controller controls each of the hybrid energy storage systems according to the frequency deviation of the power grid and the health status of each group of hybrid energy storage systems to provide frequency support for the power grid. The simulation results show that the proposed power allocation coefficient adaptive control strategy can effectively distribute the power difference and reduce the difficulty of power grid dispatching control. The frequencymodulated power adaptive control strategy can effectively increase the inertia of the power grid and provide frequency support.
作者
肖吉
刘国荣
刘科正
XIAO Ji;LIU Guorong;LIU Kezheng(Wind Power Equipment and Power Conversion Collaborative Innovation Center,Hunan Institute of Engineering,Xiangtan 411104,Hunan,China;Shenzhen EcoFlow Technology Limited,Shenzhen 518000,Guangdong,China)
出处
《电网与清洁能源》
北大核心
2022年第1期97-107,共11页
Power System and Clean Energy
基金
国家自然科学基金项目(5177040)。
关键词
健康状态
跟踪电网调度
功率分配系数自适应
T-S模糊神经网络
调频功率自适应
health state
tracking power grid dispatching
power allocation coefficient adaptive
T-S fuzzy neural network
frequency-modulated power adaptive