期刊文献+

基于改进秩次集对变权组合模型的月度负荷预测

Monthly Load Forecasting Based on Variable Weigh Combination Model of Improved Rank Set Pair Analysis
下载PDF
导出
摘要 为进一步提高月用电负荷预测精度,本文提出一种基于改进秩次集对和灰色模型的变权组合预测方法。采用改进秩次集对算法,在秩次集对模型中引入天气指标,并利用熵权法确定各指标权重,增强了秩次集对算法的适应性和有效性。接着采用变权法将改进秩次集对模型和灰色模型进行变权组合,不断滚动优化组合模型权重,改善了单一模型预测精度的稳定性。实例预测结果验证了该方法的有效性。 In this paper,a variable weight combination mode based on improved rank set pair analysis(RSPA)and gray model is proposed to improve the accuracy of monthly load forecasting.Firstly,the improved RSPA is proposed,in which the weather index is introduced,and the weights of index are set by the entropy weight algorithm.The method improves adaptability and effectiveness of the RSPA algorithm.Then,the variable weight method is used to combine improved RSPA and gray model with variable weights,and the weight of combination model is optimized continuously.The method improves the stability of the single model forecasting accuracy.Simulation results verify the validity of the proposed method.
作者 王阳辉 徐启峰 WANG Yang-hui;XU Qi-feng(College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China)
出处 《电气开关》 2022年第1期75-80,83,共7页 Electric Switchgear
关键词 月负荷预测 秩次集对 天气指标 灰色模型 变权组合 monthly load forecasting rank set pair analysis weather index gray model variable weight combination
  • 相关文献

参考文献16

二级参考文献144

共引文献532

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部