期刊文献+

Observability Analysis in Parameters Estimation of an Uncooperative Space Target 被引量:2

下载PDF
导出
摘要 To study the parameter estimating effects of a free-floating tumbling space target,the extended Kalman filter(EKF)scheme is utilized with different high-nonlinear translational and rotational coupled kinematic&dynamic models on the LIDAR measurements.Applying the aforementioned models and measurements results in the situation where one single state can be estimated differently with varying accuracies since the EKFs based on different models have different observabilities.In the proposed EKFs,the traditional quaternions based kinematics and dynamics and the dual vector quaternions(DVQ)based kinematics and dynamics are used for the modeling of the relative motions between a chaser satellite and an uncooperative target.In the non-contact estimating scenarios,only highly nonlinear relative attitude and range measurements:the grapple fixture on the target measured from the chaser satellite via vision-based sensors,can be used.By evaluating the results of the EKFs,the observability properties of each EKF are studied analytically and numerically with the the Observability Gramian matrices(OG)and the standard deviations for every estimated parameters.The analysis of observability perform intensive studies and reveal the intrinsic factors that affect the accuracy and stability of the parameters estimation of an uncooperative space target.Finally,the analytical and numerical results show the optimal composition of the kinematic&dynamic models and measurements.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期175-205,共31页 工程与科学中的计算机建模(英文)
  • 引文网络
  • 相关文献

同被引文献12

引证文献2

二级引证文献1

相关主题

;
使用帮助 返回顶部