摘要
线性方程组的求解是代数学中一个比较重要的内容,线性方程组求解过程中,掌握各种求解线性方程组的方法是至关重要的。基于线性方程组和矩阵之间的联系,可以用线性方程组系数和常数项所构成的行列式矩阵来研究线性方程组的求解问题。本文主要讨论矩阵的秩在方程组的解的判断中的应用以及线性方程求解中如何应用矩阵的初等变换。
The solution of linear equations is an important content in algebra.In the process of solving linear equations,it is very important to master various methods of solving linear equations.Based on the relationship between linear equations and matrices,the determinant matrix composed of coefficients and constants of linear equations can be used to study the solution of linear equations.This paper mainly discusses the application of the rank of the matrix in the judgment of the solution of the system of equations,and the application of the elementary transformation of the matrix in solving the linear equations.
作者
杨宝军
YANG Baojun(Maths Department,Taiyuan University,Taiyuan 030023,China)
出处
《安阳工学院学报》
2022年第2期82-87,共6页
Journal of Anyang Institute of Technology
关键词
矩阵
线性方程组求解
初等变换
Matrix
system of linear equations
rank of matrix
elementary transformation