摘要
2-范数线性空间是赋范线性空间的推广,它定义了更为广泛地范数。首先证明了2-范数线性空间中的压缩映像原理是成立的,以及严格凸的2-范数线性空间中的非扩张映射的不动点集是凸集;得到了有限维严格凸的2-范数线性空间是一致凸的,并证明了由向量积诱导的2-范数线性空间是一致凸的。
Linear 2-normed space is a generalization of linear normed space,which defines a more extensive norm.In this paper,we get contraction mapping theorem in linear 2-normed space holds,and the set of fixed points for nonexpansive mapping is convex when linear 2-normed space is strictly convex.We obtain that the strictly convex linear 2-normed space with finite dimension is uniformly convex.Thus we get the corollary that the linear 2-normed space induced by the vector product is uniformly convex.
作者
李珊珊
崔云安
LI Shan-shan;CUI Yun-an(School of Sciences, Harbin University of Science and Technology, Harbin 150080, China)
出处
《哈尔滨理工大学学报》
CAS
北大核心
2021年第6期153-156,共4页
Journal of Harbin University of Science and Technology
基金
国家自然科学基金(11871181).
关键词
2-范数线性空间
压缩映像原理
不动点
严格凸
一致凸
linear 2-normed space
contraction mapping theorem
fixed point
strict convexity
uniform convexity