期刊文献+

2-范数线性空间的严格凸与一致凸性

Strict Convexity and Uniform Convexity in Linear 2-normed Spaces
下载PDF
导出
摘要 2-范数线性空间是赋范线性空间的推广,它定义了更为广泛地范数。首先证明了2-范数线性空间中的压缩映像原理是成立的,以及严格凸的2-范数线性空间中的非扩张映射的不动点集是凸集;得到了有限维严格凸的2-范数线性空间是一致凸的,并证明了由向量积诱导的2-范数线性空间是一致凸的。 Linear 2-normed space is a generalization of linear normed space,which defines a more extensive norm.In this paper,we get contraction mapping theorem in linear 2-normed space holds,and the set of fixed points for nonexpansive mapping is convex when linear 2-normed space is strictly convex.We obtain that the strictly convex linear 2-normed space with finite dimension is uniformly convex.Thus we get the corollary that the linear 2-normed space induced by the vector product is uniformly convex.
作者 李珊珊 崔云安 LI Shan-shan;CUI Yun-an(School of Sciences, Harbin University of Science and Technology, Harbin 150080, China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2021年第6期153-156,共4页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11871181).
关键词 2-范数线性空间 压缩映像原理 不动点 严格凸 一致凸 linear 2-normed space contraction mapping theorem fixed point strict convexity uniform convexity
  • 相关文献

参考文献3

二级参考文献18

  • 1Moslehian M. S., Sadeghi Gh., A Mazur Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal- ysis, 2008, 69(10): 3405-3408.
  • 2Gahler S., 2-normierte Raume, Math. Nachr., 1965, 28: 1-43.
  • 3Chu H. Y., On the Mazur-Ulam problem in linear 2-normed spaces, J. Math. Anal. Appl., 2007, 327: 1041-1045.
  • 4White A. C., 2-Banach spaces, Math. Nachr., 1969, 42: 43-60.
  • 5Ding G. G., Introduction to Banach Spaces, Beijing: Science Press, 2008 (in Chinese).
  • 6Mazur S., Ulam S., Sur les transformation isometriques d'espaces vectoriels normes, C. R. Acad. Sci. Paris, 1932, 194: 946-948.
  • 7Baker J. A., Isometries in normed spaces, Amer. Math. Monthly, 1971, 78: 655-658.
  • 8Rassias Th. M., Semrl P., On the Mazur-Ulam problem and the Alexandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc., 1993, 118: 919-925.
  • 9Rassias Th. M., On the A. D., Aleksandrov problem and conservative distances and the Mazur-Ulam theorem, Nonlinear Analysis, 2001, 47: 2597-2608.
  • 10王声望,郑维行.事变函数与泛函分析概要[M].北京:高等教育出版社,2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部