期刊文献+

等离子体氛围下生物质固定床气化性能的模拟研究 被引量:1

Simulation Study on Gasification Performance of Biomass Fixed Bed under Plasma Atmosphere
下载PDF
导出
摘要 为了提高生物质固定床的气化效率,研究等离子体的加入对气化效率的影响。运用了Aspen Plus化工模拟软件,采用银合欢木材作为生物质原料、O_(2)作为气化剂,对生物质在等离子体固定床中的气化过程进行了模拟。通过将等离子体看作一个额外的热源(改变重整区的温度),探究等离子体氛围下生物质固定床中的热解影响因素和热解产气分布。模拟并分析了O_(2)当量比、等离子体重整区热解温度分别对气化结果的影响。结果表明:O_(2)当量比=0.30、等离子体重整区热解温度为1000℃时,能得到较高的气化产率。该次模拟为实际操作提供了理论指导。 In order to improve the gasification efficiency of biomass fixed bed,the effect of plasma addition on gasification efficiency was studied.In this paper,Aspen Plus chemical simulation software was used to simulate the gasification process of biomass in plasma fixed bed with leucaena wood as biomass raw material and oxygen as gasification agent.By considering the plasma as an additional heat source(changing the temperature of the reforming zone),the influence factors of pyrolysis and the distribution of pyrolysis gas in the biomass fixed bed under the plasma atmosphere were investigated.The effects of O_(2) equivalent ratio and pyrolysis temperature of plasma reforming zone on gasification results were simulated and analyzed.The results show that when the O_(2) equivalent ratio is 0.30 and the pyrolysis temperature of plasma reforming zone is 1000℃,higher gasification yield can be obtained.The simulation provides theoretical guidance for practical operation.
作者 袁文华 张正彪 张俊霞 伏军 YUAN Wenhua;ZHANG Zhengbiao;ZHANG Junxia;FU Jun(School of Mechanical and Energy Engineering,Shaoyang University,Shaoyang 422000,Hunan,China)
出处 《能源与节能》 2022年第2期1-4,9,共5页 Energy and Energy Conservation
基金 国家自然科学基金面上项目(52076141) 湖南省教育厅重点项目(18A395) 湖南省科技厅科技计划重点研发项目(2018GK2074) 邵阳学院研究生科研创新项目(CX2021SY050)。
关键词 生物质 等离子体 Aspen Plus 气化 biomass plasma Aspen Plus gasification
  • 相关文献

参考文献5

二级参考文献70

  • 1张金龙,李要建,王贵全,徐永香,盛宏至.玻璃体形成机理与重金属固定效率[J].化工学报,2011,62(S1):215-218. 被引量:8
  • 2汪洋,代正华,于广锁,于遵宏.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004,27(4):27-33. 被引量:86
  • 3胡真,刘初平,束富荣,李战国,闫学峰.热等离子体技术销毁日本遗弃化武红弹装填物研究[J].安全与环境学报,2006,6(6):84-87. 被引量:3
  • 4Heberlein J, Murphy A B. Thermal plasma waste treatment[J]. Phys. D: Appl. Phys, 2008, (4):1-20.
  • 5Westinghouse Plasma Corporation,Hazardous Waste Destruction[EB/OL]. http://www.westinghouseplasma.com/applications/waste-processing.
  • 6SRL Plasma,Destruction of Ozone Depleting Substances, [EB/OL].http: //www. plascon.com.au/destruction-of-ozone-depleting- substanees.html.
  • 7Kaldas A, Picard AI, Chronopoulos IC, et al. Plasma Arc Waste Destnlction System (PAWDS) A Novel Approach to Waste Elimination Aboard.
  • 8Aspen Technology. Aspen plus user guide[M]. USA: Aspen Technology, 2000.
  • 9Aspen Technology. Aspen plus getting started solids [J]. USA: Aspen Technology, 2000.
  • 10Sotudeh-Gharebaagh R, Legros R, Chaould J. Simulation of circulating fluidized bed reactors using ASPEN PLUS[J]. Fuel, 1998, 77(4): 327-337.

共引文献50

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部