摘要
煤矿井下钻孔施工过程具有非线性及难预测性,钻孔机器人应能根据地层的变化实时自适应调节钻进参数。通过前期大量试验建立了专家数据库,数据库包含了不同岩性、不同倾角及不同深度等的钻进控制向量,为自适应钻进提供了丰富的基础数据;形成了一套控制向量差分进化算法,对专家数据库的控制向量进行优化。钻孔机器人以优化后的控制向量进行控制,实现钻进效率较高、钻进事故较少的额定工作状态。
The construction process of underground drilling in coal mine is nonlinear and difficult to predict. Drilling robot should be able to adjust the drilling parameters according to the formation change in real time. A database of expert numbers has been established by a large number of experiments in the early stage, which contains drilling control vectors of different lithology, different inclination angle and different depth, provides abundant basic data for adaptive drilling. A set of control vector differential evolution algorithm was formed to optimize the control vector of the expert database. The drilling robot was controlled by the optimized control vector to realize the rated working state with high drilling efficiency and less drilling accidents.
作者
王清峰
肖玉清
秦怡
Wang Qingfeng;Xiao Yuqing;Qin Yi(State Key Laboratory of Gas Disaster Detecting,Preventing and Emergency Controlling,Chongqing 400037,China;Chongqing Research Institute,China Coal Technology and Engineering Group,Chongqing 400039,China)
出处
《煤矿机械》
2022年第2期25-28,共4页
Coal Mine Machinery
基金
国家重点研发计划项目(2020YFB1314201)。
关键词
钻孔机器人
专家数据库
差分进化算法
自适应钻进
drilling robot
expert database
differential evolution algorithm
adaptive drilling