期刊文献+

基于变分自编码器的输送带煤量分级算法研究

Research on Classification Algorithm of Belt Coal Quantity Based on Variational Autoencoder
下载PDF
导出
摘要 为了能够高效精准地对煤矿带式输送机上的煤量进行分级,提出了一种基于变分自编码器(VAE)的输送带煤量分级算法。首先为了解决真实场景图像往往存在许多噪声信息的问题,利用VAE对图像进行重构处理,使图像更加光滑以减少噪声信息对后续分级的干扰。然后为了提升输送带煤量的分级精度,利用卷积神经网络(CNN)对重构后的图像进行分级预测。实验结果表明,相对于对比方法,此该算法在各评价指标上均有提升,同时重构图像能够保留原始图像的关键信息。 In order to efficiently and accurately classify the coal quantity on the coal mine belt conveyor, a belt coal quantity classification algorithm based on variational autoencoder(VAE) was proposed. First of all, in order to solve the problem that real scene images often have a lot of noise information, VAE was used to reconstruct the image to make the image smoother, so as to reduce the interference of noise information on subsequent grading. Then in order to improve the classification accuracy of the belt coal quantity, a convolutional neural network(CNN) was used to classify and predict the reconstructed image. The experimental results show that compared with the comparison method, this algorithm has improved various evaluation indexes, and the reconstructed image can retain the key information of the original image.
作者 方中喜 迟双宝 王雷 Fang Zhongxi;Chi Shuangbao;Wang Lei(Jinjie Coal Mine,Shengdong Coal Group,Yulin 719319,China;Guoneng Wangxin Technology(Beijing)Co.,Ltd.,Beijing 100000,China)
出处 《煤矿机械》 2022年第2期187-189,共3页 Coal Mine Machinery
关键词 输送带煤量 VAE CNN belt coal quantity VAE CNN
  • 相关文献

参考文献5

二级参考文献144

  • 1孙彦景,于满,何妍君.煤矿信息物理融合系统模型[J].计算机研究与发展,2011,48(S2):295-301. 被引量:18
  • 2孙效玉,姚常明,高登来,冯建宏.数字矿山建设是解决露天煤矿信息化应用深层次问题的有效途径[J].科技导报,2004,22(6):45-47. 被引量:20
  • 3僧德文,李仲学,张顺堂,马斌,赵怡晴.数字矿山系统框架与关键技术研究[J].金属矿山,2005,34(12):47-50. 被引量:68
  • 4张申,丁恩杰,赵小虎,胡延军,胡青松.数字矿山及其两大基础平台建设[J].煤炭学报,2007,32(9):997-1001. 被引量:85
  • 5HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 7VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 8LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 9TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 10SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.

共引文献521

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部