期刊文献+

融合CANNY算子与HOG算子的建筑物识别方法 被引量:2

Building Recognition Method Combining CANNY Operator and HOG Operator
下载PDF
导出
摘要 建筑物由于其多样性和所处环境的复杂性成为了计算机视觉领域研究的热点。针对当下识别建筑物的方法准确率不高的问题,提出了融合CANNY算子与HOG算子的方法识别建筑物。利用CANNY边缘检测算子提取建筑物的边缘信息,之后对边缘检测后的建筑物图像使用HOG算子提取其边缘轮廓特征,构造特征向量,将其输入非线性支持向量机(SVM)中进行分类。通过在Sheffield建筑物数据集中进行验证,其识别准确率可以达到97%以上。实验结果表明,提出的方法在识别建筑物的鲁棒性及准确度等方面具有相对较好的效果。 Buildings have become a hotspot in the field of computer vision research due to their diversity and the complexity of the environment.Aiming at the problem of low accuracy of the current method of identifying buildings,in this paper,a method of combining CANNY operator and HOG operator is proposed to identify the building.CANNY edge detection operator is used to extract the edge information of the building;and then HOG operator is used to extract the edge contour feature of the building image after the edge detection,construct the feature vector,and input it into the nonlinear support vector machine(SVM)for classification.Through verification in the Sheffield building data set,its recognition accuracy can reach more than 97%.The experimental results show that the method proposed in this paper has a relatively good effect in the robustness and accuracy of recognizing buildings.
作者 董伟达 张宁 于子雯 赵丽曼 DONG Weida;ZHANG Ning;YU Ziwen;ZHAO Liman(School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2022年第1期24-30,共7页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省科技发展计划项目(20170204048GX)。
关键词 建筑物识别 机器学习 支持向量机 特征提取 building recognition machine learning support vector machine feature extraction
  • 相关文献

参考文献8

二级参考文献53

  • 1陆伟,倪林.利用颜色和熵提取感兴趣区域的感性图像检索[J].中国图象图形学报,2006,11(4):492-497. 被引量:18
  • 2季顺平,袁修孝.一种基于阴影检测的建筑物变化检测方法[J].遥感学报,2007,11(3):323-329. 被引量:27
  • 3Wang B, Fan S S. An improved Canny edge detection algorithm[C]//2009 Second International Workshop on Computer Science and Engineering. Los Alamitos: IEEE Computer Society's Conference Publishing Serv- ice (CPS), 2009 : 497-500.
  • 4C-eng H,Luo M, Hu F. Improved sell-adaptive edge de- tection method based on Canny[C]//2013 5th Inlema- tional Con{erence on Intelligent Human-Machine Sys- tems and Cybernetics. Los Alamitos: IEEE Computer Society's Conference Publishing Service (CPS), 201,3: 527-530.
  • 5Thuy T N, Xuan D P, Dongkyun K, et al. A test frame- work for the accuracy of line detection by hough trans- [orm[C]//The IEEE International Conference on In- dustrial Informatics (INDIN). Piscataway: Institute of Electrical and Electronics Engineers Inc. , 2008: 1598- 1533.
  • 6l)uan I)G, Meng X, Qian M, et al. An improved laough transt'orm {or line detection[C]//2010 International Con{erence on Computer Application and System Modeling (ICCASM 2010). Piscataway: IEEE Com- puter Society, 2010,2 : 354-357.
  • 7Oliva A,Torralba A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope [ J ]. International Journal of Computer Vision,2001,42 (3) : 145-175.
  • 8Oliva A,Torralba A. Building the Gist of a Scene:The Role of Global Image Features in Recognition [ J ]. Progress in Brain Research: Visual Perception, 2006, 155:23-36.
  • 9Dalai N,Triggs B. Histograms of Oriented Gradients for Human Detection[C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005:886-893.
  • 10Bosch A, Zisserman A, Munoz X. Representing Shape with a Spatial Pyramid Kernel [ C ]//Proceedings of the 6th ACM International Conference on Image and Video. New York, USA:ACM Press,2007:401 408.

共引文献32

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部