期刊文献+

基于稀疏重构的海杂波抑制和目标提取算法 被引量:2

Sea clutter suppression and target extraction algorithm based on sparse reconstruction
下载PDF
导出
摘要 在杂波较强的环境下,雷达目标回波往往淹没在杂波中难以被检测,尤其在海杂波背景下,目标的多普勒频率有可能会落在杂波频率范围中,此时传统的杂波抑制方法就产生了一定的局限性。针对此问题,依据杂波、目标信号的稀疏特性和二者在多普勒频率分布特性上的不同,设计了对应的时频域过完备字典;再通过形态成分分析算法求出目标和杂波分量的稀疏系数向量;将对应字典和稀疏系数向量相乘,恢复出目标和杂波分量,同时实现了杂波抑制和目标信息提取。最后,通过实测数据验证了该算法的有效性。 In a strong clutter environment, radar target echoes are often submerged in clutter and difficult to detect. Especially under the background of sea clutter, the Doppler frequency of target may fall in clutter frequency range. At this time, traditional clutter suppression method has limitations. In response to this problem, corresponding time-frequency domain over-complete dictionaries are designed, which are based on the sparse characteristics and the differences in Doppler frequency range of target and clutter. Then use morphological component analysis algorithm to find the sparse coefficients of target and clutter components. The target and clutter components are recovered by multiplying the corresponding dictionary and sparse coefficients, achieving clutter suppression and target information extraction. Finally, the effectiveness of the algorithm is verified by measured data.
作者 李文静 李卓林 袁振涛 LI Wenjing;LI Zhuolin;YUAN Zhentao(Beijing Institute of Radio Measurement,Beijing 100854,China;Air Force Academy,Beijing 100085,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2022年第3期777-785,共9页 Systems Engineering and Electronics
关键词 杂波抑制 稀疏重构 形态成分分析 目标提取 clutter suppression sparse reconstruction morphological component analysis target extraction
  • 相关文献

参考文献7

二级参考文献104

  • 1温佩芝,史泽林,于海斌.基于形态学的海面背景红外点目标检测方法[J].光电工程,2003,30(6):55-58. 被引量:16
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报,2007,35(3):520-525. 被引量:128
  • 4田建生,刘铁军.高频雷达海洋回波混沌特性研究[J].系统工程与电子技术,2007,29(5):687-691. 被引量:4
  • 5A Hyvarinen, J Karhunen, E Oja. Independent component analysis[M]. New York: Wiley, 2001.
  • 6A Belouchrani,K A Merairn, J-F Cardoso, E Moulines. A blind source separation technique based on second order statistics[ J]. reEF, transactions on Signal Processing, 1997, 45 (2) : 434 - 444.
  • 7B A Pearlrnutter, V K Potluru. Sparse separation:Principles and tricks[ A]. Proceedings of International Society for Optical Engineering(SPIE) [ C]. Orlando, FL, USA,2003,5102:1 - 4.
  • 8P G Georgiev,F Theis,A Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures [ J]. IEEE Transactions on Neural Network, 2005, 16 ( 4 ) : 992 - 996.
  • 9M Zibulevsky, B A Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary [J ]. Neural Computation,2001,13(4) : 863 - 882.
  • 10J L Starck, M Elad, D Donoho. Redundant multiscale transforms and their application for morphological component analysis[J]. Advances in Imaging and Electron Physics, 2004, 132 (82) : 287 - 348.

共引文献108

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部