期刊文献+

一种超像素上Parzen窗密度估计的遥感图像分割方法 被引量:1

Remote sensing image segmentation based on Parzen window density estimation of super-pixels
下载PDF
导出
摘要 图像分割是高分辨率遥感图像分析中的关键步骤,对信息提取精度起到重要作用。为提高传统基于像素的遥感图像分割算法性能,提出一种在超像素上进行Parzen窗密度估计的分割算法。包括超像素初始分割、特征测量、密度估计并重新聚类3个主要步骤。在超像素初始分割阶段,采用简单线性迭代聚类算法将图像进行超像素粗分割,并将每个超像素块标记为图结构中的一个顶点;然后测量每个超像素块的Gabor纹理特征,构建高维特征向量并计算纹理间的相似度,作为图中连接2个顶点的边的权值,并在该图的最小生成树上计算2个顶点之间的距离;接着将此距离用于Parzen窗,估计每个顶点的密度,并重新聚类得到最终结果。采用多幅多光谱高分辨遥感图像验证本文提出的算法,基于目视判别以及基于准确率和召回率的定量评价,将该方法与其他分割算法的结果进行比较,验证了提出算法的有效性。 Image segmentation is a key step in the analysis of high-resolution remote sensing images and plays an important role in improving information extraction accuracy.To improve the performance of traditional pixel-based image segmentation methods,this study proposed a new algorithm based on Parzen window density estimation of super-pixel blocks.The new algorithm includes three main steps,namely super-pixel initial segmentation,feature measurement,and density estimation and re-clustering.In the first step,an image is coarsely divided using the simple linear iterative clustering(SLIC)algorithm,and each super-pixel block is marked as a node in the graph structure of the image.In the second step,the Gabor texture features of each super-pixel block are measured to construct high-dimension feature vectors.Meanwhile,the similarity of the image textures is calculated as the weight of the edge connecting two nodes in the graph.Then,the distance between the two nodes is calculated on the minimum spanning tree(MST)of the graph.In the third step,the calculated distance is used for Parzen window density estimation of each node,and re-clustering of the density values is conducted to obtain the final results.In the experiments,multiple multispectral high-resolution remote sensing images were adopted to verify the algorithm proposed in this study.Using visual discrimination and the quantitative evaluation based on precesion rate and recall rate,the segmentation results of the algorithm proposed in this study were compared with those of other algorithms.The experiments verified that the algorithm proposed in this study is effective.
作者 张大明 张学勇 李璐 刘华勇 ZHANG Daming;ZHANG Xueyong;LI Lu;LIU Huayong(School of Mathematics and Physics,Anhui Jianzhu University,Hefei 230022,China;Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes,Hefei 230601,China)
出处 《自然资源遥感》 CSCD 北大核心 2022年第1期53-60,共8页 Remote Sensing for Natural Resources
基金 国家自然科学基金项目“基于压平和3-DDIC的角膜生物力学性能活体检测方法及技术研究”(编号:61471003) 安徽省高校自然科学基金项目“几何造型理论及其方法研究”(编号:KJ2018A0518) “城市建筑声环境设计及质量评价方法研究”(编号:KJ2020A0484) “基于多粒度语义评价的群决策应用研究”(编号:KJ2019JD17) 安徽省重点实验室开放课题“建筑声环境设计、监测与评估有关理论及关键技术研究”(编号:IBES2018KF04)共同资助。
关键词 多光谱遥感图像 Parzen窗密度估计 超像素 最小生成树 图像分割 区域合并 multispectral remote sensing image Parzen window density estimation super-pixel minimum spanning tree image segmentation region merging
  • 相关文献

参考文献4

二级参考文献20

  • 1Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199.
  • 2Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689.
  • 3Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620.
  • 4Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz.
  • 5Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239.
  • 6Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html.
  • 7Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps.
  • 8Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps.
  • 9Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf.
  • 10卢洁,杨学志,郎文辉,左美霞,徐勇.区域GMM聚类的SAR图像分割[J].中国图象图形学报,2011,16(11):2088-2094. 被引量:16

共引文献245

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部