期刊文献+

基于多重规则和路径评价的在线中英文手写识别方法 被引量:1

Online Chinese and English Handwriting Recognition Method Based on Multiple Rules and Path Evaluation
下载PDF
导出
摘要 手写文本识别方法主要应用于文本输入技术,对人机交互领域的发展起关键作用。针对多数在线输入法无法识别中英文混合手写识别的问题,提出一种在线中英文混合手写文本识别方法。通过对文本笔画进行基于水平相对位置、垂直重叠率、面积重叠率规则的整合以及连笔切分,得到一系列字符片段,同时利用笔画个数、宽高比、中心偏离、平滑度等几何特征和识别置信度,对字符片段进行中英文分类。在此基础上,根据分类结果并结合自然语言模型的路径评价及动态规划搜索算法,分别对候选的中、英文字符片段进行合并处理,得到待识别的中、英文字符序列,并将其分别送入卷积神经网络的中、英文识别模型中,得到手写文本识别结果。实验结果表明,在线手写中英文混合文本识别正确率达93.67%,不仅能切分在线手写中文文本行,而且对包含字符连笔的在线手写中英文文本行也有较好的切分效果。 Handwritten text recognition is mainly used in text input technology,which plays a key role in the development of human-computer interaction. To address the lack of functionality for Chinese and English mixed handwritten text recognition in most online input methods,an online Chinese and English mixed handwritten text recognition method is proposed.Through the integration of text strokes based on the horizontal relative position,vertical overlap rate,area overlap rate rules,and continuous stroke segmentation,a series of character segments are obtained.In addition,Chinese and English character segments are classified based on the number of strokes,aspect ratio,center deviation,smoothness,and recognition confidence. On this basis,according to the classification results,combined with the path evaluation of the natural-language model and dynamic programming search algorithm,the candidate and English character segments are combined to obtain the Chinese and English character sequences to be recognized,which are,respectively,sent to the Chinese and English recognition models of the Convolutional Neural Network(CNN)to obtain the handwritten text recognition results. The experimental results show that and the recognition accuracy of the online handwritten Chinese and English mixed text is 93.67%,the proposed method can segment online handwritten Chinese text lines as well as online handwritten Chinese and English text lines containing characters.
作者 付鹏斌 刘鹏辉 杨惠荣 董澳静 FU Pengbin;LIU Penghui;YANG Huirong;DONG Aojing(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第3期253-262,共10页 Computer Engineering
基金 国家自然科学基金(61772048) 北京市自然科学基金(4153058)。
关键词 在线手写识别 中英文混合手写 中英文分类 文本行切分 路径评价 online handwriting recognition mixed Chinese and English handwriting Chinese and English classification text line segmentation path evaluation
  • 相关文献

参考文献3

二级参考文献27

  • 1陈艳,孙羽菲,张玉志.基于连通域的汉字切分技术研究[J].计算机应用研究,2005,22(6):246-248. 被引量:11
  • 2陈强,朱立新,夏德深.结合Canny算子的图像二值化[J].计算机辅助设计与图形学学报,2005,17(6):1302-1306. 被引量:51
  • 3.ExperVision公司研发OCR高科技产品,在国际同类产品20项评比中19项得第一,副标题王庆人在南开大学研发成功技术转移来美·大放异彩[N].美国:世界日报,1993-9-17(头版头条).
  • 4Rice SV, Kanai J, Nartker TA. An evaluation of OCR accuracy. Technical Report, Las Vegas: Information Science Research Institute, University of Nevada, 1993.9-33.
  • 5Rice SV, Kanai J, Nartker TA. The 3rd annual test of OCR accuracy. Technical Report, Las Vegas: Information Science Research Institute, University of Nevada, 1994. 11-38.
  • 6Kanai J, Liu YC, Rice SV, Nartker TA. A preliminary evaluation of Chinese OCR systems. Technical Report, Las Vegas:Information Science Research Institute, University of Nevada, 1994.41-47.
  • 7Guo H, Ding XQ, Zhang Z, Guo FX. Realization of a high-performance bilingual Chinese-English OCR system. In: Kavanaugh M,Storms P, eds. ICDAR'95: the 3rd Int'l Conf. on Document Analysis and Recognition. Los Alamitos: IEEE Computer Society Press,1995. 978-981.
  • 8Feng ZD, Huo Q. Confidence guided progressive search and fast match techniques for high performance Chinese/English OCR. In:Kasturi R, Laurendeau D, Suen C, eds. ICPR 2002: the 16th Int'l Conf. on Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2002. 89-92.
  • 9Huo Q, Feng ZD. Improving Chinese/English OCR performance by using MCE-based character-pair modeling and negative training. In: Antonacopoulos A, ed. ICDAR 2003: the 7th Int'l Conf. on Document Analysis and Recognition. Los Alamitos: IEEE Computer Society Press, 2003. 364-368.
  • 10靳简明 王庆人.多语言字符识别系统集成研究[J].软件学报,2002,13:225-230.

共引文献32

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部