摘要
This paper studies inter-annual variations of 6.5-Day Waves(6.5 DWs) observed at altitudes 20-110 km between 52°S-52°N latitudes during March 2002-January 2021, and how these variations were related to the equatorial stratospheric Quasi-Biennial Oscillation(QBO). Temperature amplitudes of the 6.5 DWs are calculated based on SABER/TIMED observations. QBO zonal winds are obtained from an ERA5 reanalysis dataset. QBO phases are derived using an Empirical Orthogonal Functions(EOF) method. Wavelet analysis of the observed 6.5 DW variations demonstrates obvious spectral maximums around 28-38 months at 32°N-52°N, and around 26-30 months at 32°S-52°S. In the Northern Hemisphere, peak periods lengthened poleward;in the Southern Hemisphere, however,they were unchanged with latitude. Residual 6.5 DWs amplitudes have been determined by removing composite amplitudes from 6.5 DWs amplitudes. Comparisons between QBO and monthly maximum residual 6.5 DWs amplitudes(AMmax) show clear correlations between the QBO and 6.5 DWs in both hemispheres, but the observed relationship is stronger in the NH. When AMmax NH, the mean QBO profile was easterly at all levels from 70 to 5 hPa;when the AMmax below 30 hPa. Linear Pearson correlation coefficients between QBO phases and AMmax 20°N-52°N in April and around 64 km at 24°S in February, and large negative values from 80 to 110 km between 20°N-50°N in August and at 96-106 km between 20°S-44°S in February. These results indicate quantitative correlations between QBO and 6.5 DWs and provide credible evidences for further studies of QBO modulations on long-term variations of 6.5 DWs.
基金
jointly supported by the National Basic Research Program of China through grant 2012CB825606
the National Natural Science Foundation of China through grants 41504118,41375045,41525015,and 41774186
the Natural Science Foundation of Jiangsu Province through grants BK20150709 and BK20161531
Projects Supported by the Specialized Research Fund for State Key Laboratories。