期刊文献+

投影梯度算法求解非线性反问题的αl_(1)-βl_(2)正则化

A Projected Gradient Method for αl_(1)-βl_(2) Regularization of Nonlinear Inverse Problems
下载PDF
导出
摘要 研究非线性不适定算子方程A(x)=y的αl_(1)-βl_(2)稀疏正则化的求解问题.由于现有的ST-(αl_(1)-βl_(2))算法可以任意慢,将基于广义条件梯度方法的投影梯度算法推广至求解非线性反问题的非凸αl_(1)-βl_(2)稀疏正则化,并证明其稳定性.此外,通过Morozov偏差原则确定l_(1)-球约束半径R. In this paper,the solution of αl_(1)-βl_(2) regularization of nonlinear ill-posed operator equation A(x)=y is investigated.The current ST-(αl_(1)-βl_(2)) algorithm can be arbitrarily slow,the projected gradient algorithm based on generalized conditional gradient method is used to solve the non-convex αl_(1)-βl_(2) regularization of nonliner inverse problems,and the proof of stability of the algorithm is given.In addition,a strategy to determine the radius R of l_(1)-ball constraint by Morozov’s discrepancy principle is proposed.
作者 赵祝光 丁亮 Zhao Zhuguang;Ding Liang(Northeast Forestry University)
机构地区 东北林业大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2021年第6期12-17,共6页 Natural Science Journal of Harbin Normal University
关键词 非线性不适定问题 αl_(1)-βl_(2)稀疏正则化 广义条件梯度算法 Morozov偏差原则 投影梯度方法 Nonlinear ill-posed problems αl_(1)-βl_(2)sparse regularization Generalized conditional gradient algorithm Morozov’s discrepancy principle Projected gradient methond
  • 相关文献

参考文献1

二级参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部