期刊文献+

基于卷积神经网络的脑肿瘤分割的研究进展 被引量:6

Research Progress of Brain Tumor Segmentation Based on Convolutional Neural Network
原文传递
导出
摘要 基于卷积神经网络的脑肿瘤图像分割是近年来图像处理领域的研究热点。基于此现状,首先阐述了脑肿瘤图像分割的意义、研究现状以及将卷积神经网络应用于脑肿瘤图像分割的具体优势。然后,对二维卷积神经网络、三维卷积神经网络以及卷积神经网络的经典改进模型应用于脑肿瘤图像分割的研究进展进行了详细综述,总结了在多模态脑肿瘤分割挑战赛的数据集中进行训练的分割结果。最后,讨论了卷积神经网络在脑肿瘤核磁共振图像分割中的未来发展方向。 Brain tumor image segmentation based on convolutional neural network has become a research hotspot in the field of image processing in recent years. Based on this situation, the significance and research status of brain tumor image segmentation, and the specific advantages of applying convolutional neural network to brain tumor image segmentation are described. Then, the research progress of two-dimensional convolutional neural network, three-dimensional convolutional neural network and the classical improved model of convolutional neural network applied to brain tumor image segmentation is reviewed in detail, and the segmentation results of training in the dataset of multi-mode brain tumor segmentation challenge are summarized. Finally, the future development of convolutional neural networks in magnetic resonance imaging segmentation of brain tumors is discussed.
作者 李智唯 曹慧 杨锋 曹斌 Li Zhiwei;Cao Hui;Yang Feng;Cao Bin(School of Itelligence and Information Engineering,Shandong University of Truitional Chinese Medicine,Jinan,Shandong 250355,China;Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Jinan,Shandong 250014,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第24期37-50,共14页 Laser & Optoelectronics Progress
基金 国家自然科学基金(81973981,82074579) 山东省重点研发计划(软科学)项目(2019RKB14090)。
关键词 图像处理 二维卷积神经网络 三维卷积神经网络 脑肿瘤分割 核磁共振成像 image processing two-dimensional convolutional neural network three-dimensional convolutional neural network brain tumor segmentation magnetic resonance imaging
  • 相关文献

参考文献11

二级参考文献91

  • 1石平,雷增杰,蓝宗富,朱世杰.如何快速有效地获取网上病理学图像资源[J].西北医学教育,2007,15(2):219-221. 被引量:4
  • 2BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 3BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 4HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 8VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 9YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 10POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.

共引文献785

同被引文献38

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部