期刊文献+

超大规模栅格数据管理系统的设计与实现

Design and implementation of ultra large scale raster data management system
下载PDF
导出
摘要 本文基于HDFS分布式文件系统和Spark分布式分析框架,首先,构建了超大规模栅格敎据管理系统,实现了不切片动态渲染分布式栅格地图服务,并采用移动计算到数据的策略和多级缓存机制,极大提高了动态渲染性能;然后,设计了栅格分布式分析数据模型RasterRDD,并利用Spark框架多节点分布式计算能力,大幅提升了栅格分析效率;最后,通过发布全国D0M和DEM栅格分布式地图服务,进行动态渲染和坡度分析性能验证,能够满足超大规模栅格数据的高效浏览、存储和分析。 Based on the Hadoop distributed file system(HDFS)distributed file system and Spark distributed analysis framework,an ultra large scale raster data management system is constructed,realizing the dynamic rendering of distributed raster map services without cutting tiles.The strategy of migrating calculation to data and the multi-level caching mechanism is adopted to greatly improve the dynamic rendering performance.A distributed raster analysis data model RasterRDD is designed and the Spark framework's multi-node distributed computing capability is employed to obviously improve the efficiency of raster analysis.Finally,through the publication of national DOM and DEM raster distributed map services,dynamic rendering and slope analysis performance verification are conducted,which can meet the requirement of efficient browsing,storage and analysis of ultra large scale raster data.
作者 张江东 朱江 苏望发 张玉华 李健 ZHANG Jiangdong;ZHU Jiang;SU Wangfa;ZHANG Yuhua;LI Jian(KQ GEO Technologies Co.,Ltd.Wuhan 430000,China)
出处 《测绘科学与工程》 2021年第3期60-64,共5页 Geomatics Science and Engineering
关键词 HDFS SPARK 弹性分布式数据集 动态渲染 分布式栅格分析 HDFS Spark resilient distributed dataset(RDD) dynamic rendering distributed raster analysis
  • 相关文献

参考文献1

二级参考文献14

  • 1宋江洪,赵忠明.图像分块分层结构在海量数据处理中的应用[J].计算机工程与应用,2004,40(33):31-33. 被引量:19
  • 2朱雷,潘懋,李丽勤,吴焕萍.GIS中海量栅格数据的处理技术研究[J].计算机应用研究,2006,23(1):66-68. 被引量:8
  • 3张剑波,刘丹,吴信才.GIS中栅格数据存储管理的研究与实现[J].桂林工学院学报,2006,26(1):54-58. 被引量:12
  • 4ARMBRUST M, FOX A, GRIFFITH R. Above the Clouds: A Berkeley View of cloud Computing[ EB/OL]. (2009-10- 14) [2012-02-18]. http://techreports, lib. berkeley, edu/ac- cess Pages/EECS-2009-28. html.
  • 5The Apache Software Foundation. Hadoop int-roduction [ EB/OL ]. (2011-11-10) [ 2012-02-18 ]. http://ha- doop. apache, org/.
  • 6DONG Bo, QIU Jie, ZHENG Qing-hua, et al. A Novel Approach to Improving the Efficiency of Storing and Ac- cessing Small Files on Hadoop: a Case Study by Power-Point Files[ C ]//IEEE International Conference on Serv- ices Computing. USA: IEEE Press, 2010: 65-72.
  • 7Cloudera. Hadoop small files problem [ EB/OL]. (2009- 02-02) [2012-02-18]. http://www, clouder a. corn/ blog/2009/02/02/the -small -files -problem/.
  • 8WHITE T. Hadoop : The Definitive Guide [ M ]. [ S. 1. ] : O'Reillly Media, Inc. , 2009.
  • 9LIU Xu-hui, HAN Ji-zhong, ZHONG Yun-qin, et al. Implementing WebGIS on Hadoop: A Case Study of Im- proving Small File I/O Performance on HDFS [ C ]// IEEE International Conference on Cluster Computing and Workshops. New Orl-eans : IEEE Press, 2009: 1-8.
  • 10Hadoop Wiki. Sequence File [ EB/OL ]. ( 2009-09-20 ) [2012-02-18 ]. http://wiki, apache, or g/hadoop/Se- quenceFile.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部