期刊文献+

基于正交采样的相位体三维形态快速重建算法 被引量:2

Fast Three-Dimensional Morphological Reconstruction Algorithm of Phase objects Based on Orthogonal Sampling
原文传递
导出
摘要 为满足临床检验等领域对快速获取形态信息的需求,提出了一种仅需2幅相位图的三维形态快速重建算法。该算法从2幅正交相位图中分别获取样品在相应入射光正投影面上的结构边界,通过建立、解算这2组正交的二维数据间的关联得到样品亚结构轮廓的三维坐标和平均折射率,进而给出各亚结构物理厚度的定量分布,实现样品三维结构重建。通过仿真和实验对具有不同结构特征的样品进行了三维形貌重建,实验结果验证了所提算法的有效性和普适性。 In order to meet the needs of rapid acquisition of morphological information in clinical testing and other fields,a fast three-dimensional morphological reconstruction algorithm requiring only two phase images is proposed.The algorithm obtains the structural boundary of the sample on the corresponding incident light orthographic projection plane from two orthogonal phase diagrams.By establishing and solving the correlation between the two groups of orthogonal two-dimensional data,the three-dimensional coordinates and average refractive index of the sample substructure contour are obtained,and then the quantitative distribution of the physical thickness of each substructure is given to realize the three-dimensional structure reconstruction of the sample.The three-dimensional shape reconstruction of samples with different structural characteristics is carried out through simulation and experiments.The experimental results verify the effectiveness and universality of the proposed algorithm.
作者 季颖 黄锦槟 李响 王亚伟 Ji Ying;Huang Jinbin;Li Xiang;Wang Yawei(School of Physics and Electronic Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China;College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen,Guangdong 518061,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第23期156-165,共10页 Acta Optica Sinica
基金 国家自然科学基金(11874184) 江苏大学农业装备学部项目(NZXB20200215) 江苏大学大学生科研课题立项资助项目(20A233)。
关键词 测量 相位测量 亚结构轮廓 平均折射率 三维形貌 measurement phase measurement outline of substructure average refractive index three-dimensional shape
  • 相关文献

参考文献9

二级参考文献74

  • 1马保国,乔玲玲,贾寅波.基于局部自适应阈值的细胞图像分割方法[J].计算机应用研究,2009,26(2):755-756. 被引量:9
  • 2李勇,苏显渝.用于可靠性导向相位展开的快速算法[J].光电工程,2005,32(11):76-79. 被引量:17
  • 3M H Jericho, H J Kreuzer, M Kanka, et al.. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy[J]. Appl Opt, 2012, 51(10): 1503-1515.
  • 4P Langehanenberg, L Ivanova, I Bernhardt. Automated three-dimensional tracking of living cells by digital holographic microscopy[J]. J Biomed Opt, 2009, 14(1): 014018.
  • 5M León-Rodríguez, R Rodríguez-Vera, J A Rayas, et al.. High topographical accuracy by optical shot noise reduction in digital holographic microscopy[J]. J Opt Soc Am A, 2012, 29(4): 498-506.
  • 6T Kozacki, M Józwik, K Liewski. High-numerical-aperture microlens shape measurement with digital holographic microscopy[J]. Opt Lett, 2011, 36(22): 4419-4421.
  • 7W J Qu, C O Choo, Y J Yu, et al.. Microlens characterization by digital holographic microscopy with physical spherical phase compensation[J]. Appl Opt, 2010, 49(33): 6448-6454.
  • 8E Cuche, F Bevilacqua, C Depeursinge. Digital holography for quantitative phase-contrast imaging[J]. Opt Lett, 1999, 24(5): 291-293.
  • 9L H Ma, H Wang, Y Li, et al.. Partition calculation for zero-order and conjugate image removal in digital in-line holography[J]. Opt Express, 2012, 20(2): 1805-1815.
  • 10R M Goldstein, H A Zebker, C L Werner. Satellite radar interferometry: two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713-720.

共引文献55

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部