期刊文献+

PAHs降解功能菌的识别与生物强化修复PAHs污染土壤研究进展 被引量:4

Research Progress on Identification of PAHs-Degrading Bacteria and Bioremediation of PAHs-Contaminated Soil
下载PDF
导出
摘要 多环芳烃(PAHs)是有毒有机污染物,具有致突变、致畸和致癌性作用,广泛存在于被污染的土壤环境中,对人类健康构成了严重威胁。生物强化(BA)是一种经济有效的去除土壤中PAHs的环境修复技术,筛选和识别能够降解PAHs的功能菌是该技术研发与应用的首要任务。综述了富集培养法和稳定同位素探针(SIP)技术对PAHs降解功能微生物发掘的研究进展,分析了BA修复技术应用局限及对应策略,以期为BA技术进步与应用推广提供借鉴与参考。 Polycyclic aromatic hydrocarbons(PAHs)are toxic organic pollutants with mutagenic,teratogenic,and carcinogenic properties.They are widely distributed in soil environment and pose significant hazards to human health through constant exposure.Bioaugmentation(BA)is considered to be an environmentally-friendly and cost-effective environmental remediation technology to remove PAHs from the soil.Screening and identifying functional bacteria that can degrade PAHs is the primary task of the development and application of this technology.The research progress of enrichment culturing method and stable isotope probing(SIP)technology for the discovery of PAHs degrading functional microorganisms was reviewed and the limitations and corresponding strategies of BA remediation technology were discussed,with a view to providing a comprehensive reference for the progress and application of BA technology.
作者 滕庭庭 梁继东 TENG Tingting;LIANG Jidong(School of Human Settlements and Civil Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《应用技术学报》 2022年第1期16-26,共11页 Journal of Technology
基金 国家自然科学基金(31670510) 国家重点研发计划(2020YFC1808802) 陕西地建-西安交大土地工程与人居环境技术创新中心开放基金资助项目(201912131)资助。
关键词 稳定同位素探针 生物强化 PAHs降解菌 生物表面活性剂 生物炭 stable isotope probe bioaugmentation PAH degrading bacteria biosurfactant biochar
  • 相关文献

参考文献2

二级参考文献39

  • 1葛源,贺纪正,郑袁明,张丽梅,朱永官.稳定性同位素探测技术在微生物生态学研究中的应用[J].生态学报,2006,26(5):1574-1582. 被引量:27
  • 2许超,夏北成.土壤多环芳烃污染根际修复研究进展[J].生态环境,2007,16(1):216-222. 被引量:39
  • 3Avramow, T., Sotirova, A., Galabow, D. and Karpenko, E. 2008. Effect of Triton X-100 and rhamnolipid PS-17 on the mineralization of phenanthrene by Pseudomonas sp. cells. Int. Biodeter. Biodegrad. 62: 415-420.
  • 4Balashova, N. V., Koshelva, I. A., Golovchenko, N. P. and Boronin, A. M. 1999. Phenanthrene metabolism by Pseudomonas and Burkholderia strain. Process Biochem. 35: 291-296.
  • 5Boopathy, R. 2000. Factors limiting bioremediation technologies. Bioresour. Technol. 75: 63-67.
  • 6Bramwell, D. P. and Laha, S. 2000. Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene. Biodegradation. 11:263-277.
  • 7Brown, D. G. and Jaffe, P. R. 2006. Effects of nonionic surfactants on cell surface hydrophobicity and apparent Hamaker constant of a Sphingomonas sp. Environ. Sci. Technol. 40: 195-201.
  • 8Catallo, W. J. and Portier, R. J. 1992. Use of indigenous and adapted microbial assemblages in the removal of organic chemicals from soils and sediments. Water Sci. Technol. 25: 229-237.
  • 9Churchill, S. A., Harper, J. P. and Churchill, P. F. 1999. Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl. Environ. Microbiol. 65: 549-552.
  • 10Czaplicka, M. and Chmielarz, A. 2009. Application of biosurfactants and non-ionic surfactants for removal of organic matter from metallurgical leed-bearing slime. J. Hazard. Mater. 163: 645-649.

共引文献16

同被引文献80

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部