期刊文献+

多特征融合的乳腺癌组织病理学图像识别的方法 被引量:2

Breast cancer histopathological image recognition based on multi-feature fusion
下载PDF
导出
摘要 乳腺癌是全球女性常见的癌症类型之一,严重影响了女性的健康,乳腺癌组织病理学图像的识别已成为医学图像处理领域的研究热点。针对Bioimaging 2015数据集进行乳腺癌组织病理学图像的识别研究,将该数据集分为癌类与非癌类2种。实验提取了乳腺癌组织病理学图像染色分离后4个方向上的灰度共生矩阵特征、小波特征及Tamura纹理特征,并根据颜色自动相关图提取了原始图像的颜色特征,同时也提取了染色分离前水平方向上的灰度共生矩阵特征作为纹理信息的补充,最后将提取到的特征进行融合,并输入到支持向量机分类器中,以实现乳腺癌组织病理学图像的识别,识别准确率达到了83.33%。 Breast cancer is one of the most common types of cancer in women around the world,and seriously affects the health of women.The recognition of histopathological images of breast cancer has become a research hotspot in the field of medical image processing.The Bioimaging 2015 dataset is used to recognize breast cancer histopathological images,and the dataset is classified into two types:cancer and non-cancer.In the experiments,the features of gray-level co-occurrence matrix in four directions,the wavelet features and Tamura texture features are extracted from the stained-separated breast cancer histopathological images.And the color features of the original images are extracted according to the color auto-correlogram.At the same time,the gray-level co-occurrence matrix features in the horizontal direction before stain separation are extracted as a supplement to the texture information.Finally,the extracted features are fused and input into the support vector machine classifier to realize the recognition of breast cancer histopathological images,the recognition accuracy is 83.33%.
作者 乔世昌 胡红萍 郝岩 白艳萍 QIAO Shichang;HU Hongping;HAO Yan;BAI Yanping(School of Science,North University of China,Taiyuan 030051,China;School of Information and Communication Engineering,North University of China, Taiyuan 030051,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第2期135-141,共7页 Journal of Chongqing University of Technology:Natural Science
基金 山西省回国留学人员科研项目(2020-104) 山西省重点研发计划项目(201903D121156) 山西省自然科学基金项目(201801D121026,201701D221121) 国家自然科学基金项目(61774137) 中北大学2017年校科研基金(2017027) 山西省基础研究计划项目(20210302123019)。
关键词 乳腺癌组织病理学图像 灰度共生矩阵 颜色自动相关图 breast cancer histopathological image gray level co-occurrence matrix color auto-correlogram
  • 相关文献

参考文献1

共引文献6

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部