期刊文献+

基于深度学习方法的食管癌术后调强放疗三维剂量分布预测 被引量:5

Deep learning-based prediction of three-dimensional dose distribution in postoperative intensity-modulated radiotherapy for esophageal cancer
下载PDF
导出
摘要 目的:构建一种深度学习网络模型预测食管癌调强放疗的三维剂量分布。方法:取100例中上段食管癌术后患者的调强放疗计划为研究对象,以患者计划的计算机断层扫描(CT)图像、靶区和危及器官的勾画图像以及适形射束信息作为输入数据,调强适形放射治疗(IMRT)的三维剂量分布作为输出数据,通过搭建的3D U-Res-Net混合网络进行训练并得到预测模型,利用该模型对测试集进行三维剂量预测。采用平均预测偏差-δ、平均绝对误差(MAE)、戴斯相似性系数(DSC)和豪斯多夫距离(HD_(95))评价预测结果的精确性。结果:测试集的平均预测偏差为-0.23%~0.78%,MAE为1.67%~3.07%,两组计划等剂量面DSC均值大于0.91,尤其30 Gy以下的DSC达到0.95以上,平均HD_(95)为0.51~0.73 cm。预测计划的剂量学参数均在临床允许的范围之内且相对剂量偏差小于2%,除靶区D_(2)、脊髓D_(max)、全肺V_(30)差异有统计意义外(P<0.05),其余剂量学参数差别不大。结论:本研究构建的3D U-Res-Net深度学习网络模型可以实现对食管癌术后IMRT三维剂量分布的精确预测。 Objective To develop a deep learning network model for predicting the three-dimensional(3D)dose distribution in postoperative intensity-modulated radiotherapy(IMRT)for esophageal cancer.Methods A total of 100 postoperative patients with upper and middle esophageal cancer treated by IMRT were enrolled in the study.The CT images,segmentations of target areas and organs-at-risk,and conformal beam configuration were taken as input data,and IMRT dose distribution was taken as output data.The established hybrid network 3D U-Res-Net was used for training and obtaining prediction model which was then used for the prediction of 3D dose distribution on the test set.The prediction accuracy was evaluated by the average prediction bias-δ,mean absolute error(MAE),Dice similarity coefficient(DSC)and Husdorff distance(HD_(95)).Results For the test set,the average prediction bias ranged from-0.23%to 0.78%,and MAE varied from 1.67%to 3.07%.The average DSC was above 0.91 for all isodose surfaces,especially when the dose was less than 30 Gy(DSC was higher than 0.95),and the average HD_(95) was from 0.51 cm to 0.73 cm.The dosimetric parameters of the prediction plan were all within the clinically allowable range,and the relative dose deviation was less than 2%.There is no significant difference in dosimetric parameters except for D_(2) to target area,D_(max) to spinal cord and V_(30) of whole lung(P<0.05).Conclusion The 3D dose distribution in the postoperative intensity-modulated radiotherapy(IMRT)for esophageal cancer can be accurately predicted by the established 3D U-Res-Net model.
作者 王文成 周解平 张朋 吴爱林 吴爱东 WANG Wencheng;ZHOU Jieping;ZHANG Peng;WU Ailin;WU Aidong(School of Biomedical Engineering,Anhui Medical University,Hefei 230032,China;Department of Radiation Oncology,the First Affiliated Hospital of University of Science and Technology of China,Hefei 230001,China)
出处 《中国医学物理学杂志》 CSCD 2022年第2期133-138,共6页 Chinese Journal of Medical Physics
基金 国家自然科学基金青年基金(11805198) 安徽省学术和技术带头人后备人选科研项目(2020H230)。
关键词 深度学习 食管癌 调强放疗 剂量分布预测 deep learning esophageal cancer intensity-modulated radiotherapy dose distribution prediction
  • 相关文献

参考文献3

二级参考文献14

  • 1Nelms BE, Robinson G, Markham J, et al. Variation in external beam treatment plan quality:an inter-institutional study of planners and planning systems [ J]. Pract Radiat Oncol, 2012,2 ( 4 ) : 296- 305.DOI: 10.1016/j.prro.2011.11.012.
  • 2Das IJ,Cheng CW,Chopra KL,et al. Intensity-modulated radiation therapy dose prescription, recording, and delivery : patterns of variability among institutions and treatment planning systems [ J] .J Nat Cancer Inst, 2008, 100 ( 5 ) : 300-307. DOI : 10. 1093/jnci/ djn234.
  • 3Chanyavanich V, Das S K, Lee W R, et al. Knowledge-based IMRT treatment planning for prostate cancer [J]. Med Phys, 2011,38 (5) :2515-2522.DOI: 10.1080/1030011990230204.
  • 4Yang Y, Ford E C, Wu BB, et al. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection [ J].Med Phys,2013,40(1) :011709.DOI: 10. 1118/1.4769424.
  • 5Yuan LL, Ge YR, Lee WR, et al. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans [J]. Med Phys, 2012, 39 ( 11 ) : 6868- 6878. DOI : 10.1118/1.4757927.
  • 6Appen2011er LM, Michalski JM, Thorstad WL, et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning [J]. Med Phys,2012,39(12) :7446-7461.DOI: 10.1118/1.4761864.
  • 7Sharpe MB, Moore KL, Orton CG. Within the next ten years treatment planning will become fully automated without the need for human intervention [J]. Med Phys, 2014,41 (12) : 120601. DOI : 10.1118/1.4894496.
  • 8Varian Medical Systems. DVH estimation models for Rapid Plan [ A ]//Eclipse photon and electron instructions for use [ M ]. Palo Alto : CA, 2014 : 183-204.
  • 9Fogliata A, Belosi F, Clivio A, et al. On the pre-clinical validation of a commercial model-based optimisation engine: application to volumetric modulated arc therapy for patients with lung or prostate cancer [J]. Radiother Oncol, 2014, 113 ( 3 ) : 385-391. DOI: 10.1016/j.radonc.2014.11.009.
  • 10Tol J P, Delaney A R, Dabele M, et al. Evaluation of a knowledge- based planning solution for head and neck cancer [ J] .Int J Radiat Oncol Bid Phys, 2015,91 ( 3 ) : 612-620. DOI : 10.1016/j. ijrobp. 2014.11.014.

共引文献21

同被引文献34

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部