期刊文献+

色噪声与确定性谐波联合激励下Bouc-Wen动力系统响应的统计线性化方法 被引量:4

Stochastic response of a hysteresis system subjected to combined periodic and colored noise excitation via the statistical linearization method
下载PDF
导出
摘要 提出了一种用于求解色噪声和确定性谐波联合作用下单自由度Bouc-Wen系统响应的统计线性化方法。基于系统响应可分解为确定性谐波和零均值随机分量之和的假定,将原滞回运动方程等效地化为两组耦合的且分别以确定性和随机动力响应为未知量的非线性微分方程。利用谐波平衡法求解确定性运动方程,利用统计线性化方法求解色噪声激励下的随机运动方程。由此,可导出关于确定性谐波响应分量Fourier级数和随机响应分量二阶矩的非线性代数方程组。利用牛顿迭代法对上述耦合的代数方程组进行求解。数值算例验证了此方法的适用性和精度。 A statistical linearization method is proposed for determining the response of a single-degree-of-freedom Bouc-Wen system subjected to combined colored noise and harmonic loads.The proposed method is based on the assumption that the system response can be decomposed into the sum of deterministic harmonic and zero-mean random components.Specifically,the equation of motion is decomposed into two sets of nonlinear differential equations governing deterministic response and stochastic response,respectively.The harmonic balance method is used to solve the equation of motion with deterministic excitation,whereas the statistical linearization method is utilized to obtain the variance of the stochastic response.These treatments lead to a set of coupled algebraic equations in terms of the Fourier coefficients of the deterministic response and the stochastic response variance.Standard numerical schemes such as Newton’s iteration method are adopted to solve the preceding non-linear algebraic equations.Pertinent numerical examples demonstrate the applicability and accuracy of the proposed method.
作者 孔凡 韩仁杰 张远进 李书进 KONG Fan;HAN Ren-jie;ZHANG Yuan-jin;LI Shu-jin(School of Civil Engineering&Architecture,Wuhan University of Technology,Wuhan 430070,China;School of Safety Science and Emergency Management,Wuhan University of Technology,Wuhan 430070,China)
出处 《振动工程学报》 EI CSCD 北大核心 2022年第1期82-92,共11页 Journal of Vibration Engineering
基金 国家自然科学基金面上项目(52078399,51678464)。
关键词 统计线性化 Bouc-Wen滞回模型 谐波平衡法 联合激励 牛顿迭代法 statistical linearization Bouc-Wen hysteresis model harmonic balance method combined excitation Newton iteration
  • 相关文献

参考文献4

二级参考文献31

  • 1Tsu-sheng Chang,Mahendra P.Singh.Seismic analysis of structures with a fractional derivative model of viscoelastic dampers[J].Earthquake Engineering and Engineering Vibration,2002,1(2):251-260. 被引量:14
  • 2Bagley R L,Torvik P J.A Theoretical basis for the application of fractional calculus to viscoelasticity[J] ,Jourrtal of Rheology,1983,27(3):201-210.
  • 3Rossikhin Y A,Shitikova M V.Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids[J] ,Applied Mechanics Reviews,1997,50(1):15-67.
  • 4Padovan J,Sawicki J T.Nonlinear vibrations of fractionally damped systems[J] ,Nonlinear Dynamics,1998,16:321-336.
  • 5Wahi P,Chatterjee A.Averaging oscillations with small fractional damping and delayed terms[J].Nonlinear Dynamics,2004,38(1-2):3-22.
  • 6Spanos P D,Zeldin B A.Random vibration of systems with frequency-dependent parameters or fractional derivatives[J].ASCE Journal of Engineering Mechanics,1997,123(3):290-292.
  • 7Agrawal O P.Stochastic Analysis of a 1-D system with fractional damping of order 1/2[J].Journal of Vibration and Acoustics,2002,124(3):454-460.
  • 8Huang Z L,Jin X L.Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative[J].Journal of Sound and Vibration,2009,319(3-5):1121-1135.
  • 9Chen L C,Zhu W Q.Stochastic averaging method for strongly nonlinear oscillator with fractional derivative damping under combined harmonic and white noise excitations[J].Nonlinear Dynamics,2009,56(3):231-241.
  • 10Khusminskii R Z.A limited theorem for the solutions of differential equations with random right-hand sides[J].Theory Probability Applied,1966,11:390-405.

共引文献19

同被引文献17

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部