期刊文献+

时频流形自适应稀疏重构的遥测振动信号特征增强方法 被引量:5

Telemetry vibration signal feature enhancement method based on timefrequency manifold adaptive sparse reconstruction
下载PDF
导出
摘要 针对遥测振动信号非线性、非平稳性、瞬态冲击性等特点,提出一种基于时频流形自适应稀疏重构的遥测振动信号特征增强方法,对振动信号进行相空间重构提取其时频流形;以时频流形为基础,采用KSVD算法自适应构建过完备字典,并从中找到最匹配的时频原子,根据得到的原子与相空间展开信号的时频分布,依次匹配计算获得其重构的稀疏系数;利用稀疏系数和时频原子对相空间中各维信号的时频分布进行重构,通过时频分布的逆运算和相空间还原得到特征增强信号。仿真和实测信号处理结果验证了算法的有效性。 Aiming at the characteristics of nonlinearity,non-stationary and transient impact of telemetry vibration signal,a telemetry vibration signal feature enhancement method based on time-frequency manifold adaptive sparse reconstruction was proposed.The phase space reconstruction of the vibration signal was performed to extract its time-frequency manifold.Based on the time-frequency manifold,the KSVD algorithm was used to adaptively construct an over-complete dictionary and find the best matching time-frequency atoms.According to the selected atoms,the time-frequency distribution of each dimension signal in phase space was sequentially matched to calculate the reconstructed sparse coefficient.The time-frequency distribution of each dimension signal in phase space was reconstructed by using sparse coefficient and time-frequency atoms,and the feature enhancement signal was acquired by inverse operation of time-frequency distribution and phase space reduction.Simulation and measured signal processing results verified the effectiveness of the method.
作者 刘学 孙翱 李冬 黄锐 LIU Xue;SUN Ao;LI Dong;HUANG Rui(Unit 91550 of PLA,Dalian 116023,China;Institute of Vibration Engineering Research,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《振动工程学报》 EI CSCD 北大核心 2022年第1期246-254,共9页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(61801482,61703408,61801481,61971424)。
关键词 信号处理 遥测振动信号 时频流形 稀疏重构 特征增强 signal proessing telemetry vibration signal time-frequency manifold sparse reconstruction feature enhancement
  • 相关文献

参考文献3

二级参考文献15

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:74
  • 2Chin T J, Suter D. Out-of-sample extrapolation of learned manifolds [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (9) 1 547-1 556.
  • 3Xiang Shiming, Nie Feiping, Song Yangqiu, et al. Embedding new data points for manifold learning via coordinate propagation[J]. Knowledge and Informa- tion Systems Journal, 2009, 19 (2) : 159-184.
  • 4Liu Xiaoming, Yin Jianwei, Feng Zhilin, et al. Incre- mental manifold learning via tangent space aligement[J]. Arttifical Neural Networks in Pattern Recogni- tion, 2006: 107-121.
  • 5Demmel J W. Applied Numerical Linear Algebra [M]. Posts & Teleeom Press, 2007.
  • 6Efron B, Hastie T, Johnstobe I, et al. Least angle re- gression[J]. The Annals of Statistics, 2004, 32 (2) : 407-499.
  • 7Silva J G, Marques J S, Lemos J M. Selecting land- mark points for sparse manifold learning[A]. Neural Information Processing Systems 18[C]. USA, 2006: 1 241-1 248.
  • 8The Case Western Reserve University Bearing Data Center. Bearing data center fault test data[EB/OL]. http://www, eecs. ewru. edu/laboratory/bearing/.
  • 9朱明旱,罗大庸,易励群,王一军.基于正交迭代的增量LLE算法[J].电子学报,2009,37(1):132-136. 被引量:11
  • 10王大荣,张忠占.线性回归模型中变量选择方法综述[J].数理统计与管理,2010,29(4):615-627. 被引量:70

共引文献76

同被引文献55

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部