期刊文献+

公理化定义矩阵行列式的性质推导

Axiomatic Definition of Determinant of Matrix and Derivation of its Properties
下载PDF
导出
摘要 行列式的理论和应用是代数中的一个经典问题,矩阵的行列式是赋予矩阵的一个数,将矩阵的列向量视为变量,行列式可以视为列向量组的一个函数,其公理化定义为矩阵的性质推导和分析带来方便。基于行列式的公理定义,从公理出发,给出相关重要性质的详细推导,直接由性质研究线性方程组解的存在性和解的表达式。推导过程的简洁与性质间的关联,体现了公理化定义的优点。 The theory and application of determinant is a classical problem in algebra,the determinant of a matrix is a number assigned to the matrix.The column vectors of the matrix are viewed as variables,and then the determinant is a function of the column vectors.Its axiomatic definition has many advantages for the derivation and analysis of the properties of matrices.Based on the axiomatic conditions in the definition,we give the detail derivation of some important properties directly from the axioms,and investigate the existence and the expression of the solution of the system of linear equations.The derivation processes and the relations between the properties show the advantages of the axiomatic definition.
作者 赵姣珍 许道云 ZHAO Jiaozhen;XU Daoyun(Faculty of Big Data and Information Engineering,Guiyang Institute of Humanities and Technology,Guiyang 550025,China;College of Computer Science and Technology,Guizhou University,Guiyang 550025,China)
出处 《贵州大学学报(自然科学版)》 2022年第2期34-41,共8页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助项目(61762109) 贵州省教育厅自然科学研究资助项目(黔教合KY字[2021]111)。
关键词 矩阵的行列式 公理定义 行列式性质 推导 determinant of matrix axiomatic definition determinant property derivation
  • 相关文献

参考文献4

二级参考文献9

  • 1段汉根,汪毅,范益政.有向图的Laplace谱半径[J].大学数学,2007,23(3):24-28. 被引量:2
  • 2[1]Bondy J A and Murty U S[J]. Graph theory with applications, 1988
  • 3[2]Burgisser P Completeness and reduction in algebraic complexity theory[M]. Springer-Verlag Berlin Heideberg, 2000
  • 4[3]Mahajan M and Vinay V. Determinant: Old algorithms, new insights[J ]. SIAM J Discrete Mathematics, 1999,12 (4) :474~490
  • 5[4]Minh Hoang T and Thierauf T. The complexity of verifying the characteristic polynominal and testing similarity[ M ]. Proceedings of 15th annual IEEE conference on computational complexity, edited by M. Titsworth, 2000 87~95
  • 6[5]Zeiberger D A combinatorial approach to matrix algebra[J]. Discrete Mathematics, 1985, 56 67~72
  • 7王莉.n阶矩阵的特征多项式的一般项系数[J].鞍山师范学院学报,1988(4):4-6. 被引量:2
  • 8谢启鸿.循环子空间的若干应用[J].大学数学,2016,32(1):1-6. 被引量:5
  • 9Raj Kumar Kanwar.A Generalization of the Cayley-Hamilton Theorem[J].Advances in Pure Mathematics,2013,3(1):109-115. 被引量:2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部