期刊文献+

基于CNN和多尺度融合的驾驶员打电话行为检测

Driver’s Call Behavior Detection Based on CNN and Multi-scale Fusion
下载PDF
导出
摘要 由于传统的驾驶员违规接听电话行为检测方法缺乏一套严谨的评判模型,难以满足现实中驾驶员违规接听电话的识别需要,因此如何建立一套合理有效的评判模型成为亟待解决的问题。针对目前评判模型的局限性,采用计算机视觉技术和深度学习模型相结合的方式对驾驶员违规接听电话行为进行科学评判。主要是通过提取的Haar-Like特征训练级联分类器捕获脸部特征,采用CNN模型和ROI技术提取手部特征,并利用YoloV3目标检测算法识别手机,依据特征间的空间位置关系来判断驾驶员是否存在违章接听电话行为。通过大量数据的实验测试,结果证明了该评判模型不仅能将精确度提高至96.28%,而且能实时检测到行车时违规接听电话行为并进行提醒,进而降低因违规接听电话发生交通事故的概率。 Due to the lack of a set of rigorous judgment models for the traditional method of detecting illegal calls by drivers, it is difficult to meet the recognition needs of illegally answering calls in reality. Therefore, how to establish a reasonable and effective evaluation model has become an urgent problem to be solved. Aiming at the limitation of the evaluation model, computer vision technology and deep learning model are used to scientifically evaluate driver violation call. The facial features are captured by the extracted Haar-Like feature training cascade classifier, the hand features are extracted by CNN model and ROI technology, and the mobile phone is identified by YoloV3 target detection algorithm. According to the spatial location relationship between features, it can judge whether the driver has illegal phone calls behavior. Through a large number of experimental data tests, it is proved that the proposed evaluation model can not only improve the accuracy to 96.28%,but also can detect and remind the illegal phone calls while driving in real time, thus reducing the probability of traffic accidents caused by illegal phone calls.
作者 许婷婷 傅俊琼 罗昆 XU Ting-ting;FU Jun-qiong;LUO Kun(School of Information Engineering,East China University of Technology,Nanchang 330013,China;Jiangxi Engineering Technology Research Center of Nuclear Geoscience Data Science and System,East China University of Technology,Nanchang 330013,China;Nanchang Public Security Bureau Traffic Management Bureau,Nanchang 330013,China)
出处 《计算机技术与发展》 2022年第2期88-93,共6页 Computer Technology and Development
基金 江西省教育科学技术研究项目(GJJ170460) 江西省核地学数据科学与系统工程技术研究中心开发基金项目(JETRCNGDSS 201801)。
关键词 接听电话行为识别 级联分类器 CNN模型 ROI 多尺度检测 call behavior recognition cascade classifier CNN model ROI multi-scale detection
  • 相关文献

参考文献3

二级参考文献14

  • 1Tian Z,Qin H.Real-time driver's eye state detection[C]//Proceedings of the 2005 IEEE International Conference on Vehicular Electronics and Safety.2005:285-289.
  • 2Fan X,Sun Y,Yin B,et al.Gabor-based dynamic representation for human fatigue monitoring in facial image sequences[J].Pattern Recognition Letters,2010,31 (3):234-243.
  • 3King L M,Nguyen H T,Lal S K L.Early driver fatigue detection from electroencephalography signals using artificial neural networks[C]//Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2006:2187-2190.
  • 4Liu J,Zhang C,Zheng C.EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters[J].Biomedical Signal Processing and Control,2010,5(2):124-130.
  • 5Azmi N,Rahman A S M M,Shirmohammadi S,et al.LBP-based driver fatigue monitoring system with the adoption of haptic warning scheme[C]// Proceedings of the 2011 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems.2011:24-27.
  • 6Ahonen T,Matas J,He C,et al.Rotation invariant image description with local binary pattem histogram Fourier features[C]// Proceedings of the 16th Scandinavian Conference on Image Analysis.2009:61-70.
  • 7Ojala T,Pietikainen M,Maenpaa T.Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 8Chan C H,Kittler J,Messer K.Multi-scale local binary pattern histograms for face recognition[C]// Proceedings of the 2007 International Conference on Advances in Biometrics.2007:809-818.
  • 9Chang C C,Lin C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):Article 27.
  • 10王振华,贾银山,陈兴.基于SVM的驾驶员疲劳检测研究[J].科学技术与工程,2011,11(8):1828-1832. 被引量:3

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部